
CSE 451: Section 1

C, GDB, Lab 1 intro
1/4/24

Overview

1) Review of C
2) Tools for debugging
3) Office hours, discussion board
4) Lab 1 intro

2

Review of C

3

Pointers & Addresses

● &: Gets the address of where something is stored in (virtual) memory
○ a 32/64 bit (4/8 byte) number
○ you can do arbitrary math to a pointer value (might end up with an invalid address……)

■ Ptr++ Increments address by the size of the pointed to type
■ no pointer arithmetic on a void pointer!

● *: Dereferencing, “give me whatever is stored in memory at this address”.
○ dereferencing invalid addresses (nullptr, random address) causes a segfault!

4

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

← Pass in a pointer
ptr = address of an int
*ptr = value stored at the address ptr

← Gets the address at which ‘x’ resides in memory

5

Pointers & Addresses

6

Find the bug 🐛

7

Find the bug 🐛

8

Find the bug 🐛

9

Tools For Debugging

10

Old Friend: Printf

Prints are very useful for simple debugging:
● How far have we reached in a function?
● How many times did we meet a condition?
● Function invocations & its parameters

However, sometimes prints are not enough:
● bugs in your code can impact printfs in unexpected ways
● printf grabs a console lock that may make the bug difficult to reproduce
● printf uses a buffer internally, so prints might be interleaved
● can't print in assembly

11

New Friend:

GDB
This is a systems class and you’ll be doing a LOT of debugging

Also lots of pointers.
Really, the pointers are the main reason for the debugging

12

GDB commands to know: a non-exhaustive list

● gdb path/to/exe

● run: start execution of the given executable

● n: run the next line of code. If it’s a function, execute it entirely.
○ ni: Same behavior, but goes one assembly instruction at a time instead.

● s: run the next line of code. If it’s a function, step into it
○ si: Same as “s”, but goes one assembly instruction at a time instead.

● c: run the rest of the program until it hits a breakpoint or exits

13

GDB commands to know: a non-exhaustive list

● b _____: set a breakpoint for the given function or line (e.g. “b
file.c:foo”)

● bt: get the stack trace to the current point
● up/down: go up/down function stack frames in the backtrace
● (r)watch _____: set a breakpoint for the given thing being accessed
● p _____: print the value of the given thing

○ Can understand C-style variable syntax, e.g.: p *((struct my_struct*) ptr) interprets
the memory pointed to by ptr as a `struct my_struct`.

● x _____: examine the memory at an address. Many flags

14

GDB Example

15

GDB Cheatsheet

See this GDB cheatsheet for a good overview of what’s possible:
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

16

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Logistics

17

Regarding office hours

● There are a lot of strange ways you can break xk
● Unlike in other classes, there are many functional ways to structure

your code (no one right answer)
● Going through GDB in office hours is way too slow

● Please do preliminary debugging as far as you can before office
hours, so we can give useful advice

● For particularly weird issues, we might not be able to solve your
bug within available time constraints

18

Discussion Board

If you’ve tried debugging and have come up against a wall that would take too
long for office hours, consider posting on the discussion board.

Include DETAILS

● What is the problem (What did you expect to see? What actually
happened?)

● Which methods does it manifest in
● What does work
● What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be
helpful is directly influenced by the quantity of useful debugging information you
provide.

19

Reminders

● Find a lab partner and fill out the form by tomorrow!
● Read through lab 1 handout and other relevant docs

20

https://docs.google.com/forms/d/e/1FAIpQLSdT48eeZp4Cs4Xqcb1iYuXJNf6iFwio5dldE6d_uQQSCvovNA/viewform?usp=sf_link

Lab 1 Intro

21

What is xk?

- xk stands for “experimental kernel”
- Configured to run on qemu (hw emulator)
- A simpler version of the early linux kernel
- 64 bit port of xv6

22

https://en.wikipedia.org/wiki/Xv6

Different components of the xk kernel (roughly)

- Syscalls
- File System

- file.c deals with open files management and managing the file info struct (lab1)
- fs.c deals with writing and reading blocks from disk and other helper functions (lab4)

- Processes
- fork/exec/wait implementation
- proc.c and exec.c (lab 2)

- Memory management
- writing the page fault handler (for stack, heap, and else) , trap.c (lab3)

23

Where to start?

https://gitlab.cs.washington.edu/xk-public/24wi
Some suggested reading:

● lab/lab1.md - Assignment write-up (definitely read this one)
● docs/xk/overview.md - A description of the xk codebase (reference;

skimming the baseline code walkthrough section might be helpful)
● docs/xk/memory.md - An overview of memory management in xk (mostly

relevant for lab 3)
● docs/xk/debugging.md - A guide to understanding error messages
● lab/lab1design.md - A design doc for the lab 1 code

○ You will be in charge of writing design docs for the future labs (which will be a bit more
comprehensive than the one provided for lab 1). Check out lab/designdoc.md for details.

24

https://gitlab.cs.washington.edu/xk-public/24wi

Summary of Lab 1

● Setup your xk repo
● Read and learn about existing code
● Support file API (through syscalls)

○ syscall validation (checking for valid args etc.)
○ open file (I/O) abstraction

■ user: file descriptor
■ kernel: file_info

25

File API

fd = open(filename)
Returns a per-process handle to be used in subsequent calls (implemented as a C int)
Shell pre-assigns stdin, stdout as file descriptors (0, 1)

read/write(fd, buffer, numBytes)
Read or write numBytes into/out of buffer, changes position in file

new_fd = dup(fd)
Make a new file descriptor, copy of the previous one (used in shell)

close(fd)
We’re done with using this file descriptor

26

fd = file descriptor

File API

● File descriptors
○ used for all I/O, eg, network sockets, pipes for interprocess communication
○ applications use read/write regardless of what it is reading/writing to
○ per-process

■ but can be passed between processes
■ inherited by child processes

● important for how fork/exec and the shell works
● examples: ls | wc ls > tmpfile wc < tmpfile

● Kernel should not trust file descriptor (might not be previously opened, etc.)
○ applications should not be able to crash kernel

27

File Syscalls

You will need to implement a number of file related system calls.

Implementing syscalls consists of two steps:

- parsing and validating syscall arguments
- see implemented syscalls for reference (sysfile.c)
- argptr, argstr, argint, what do these functions do?

- perform the requested file operations
- need to write your own file operations using the provide inode layer (file.c)

28

File Descriptors - Kernel View

● Kernel needs to give out file descriptors upon open
○ must be give out the smallest available fd
○ fds are unique per process

■ e.g. fd 4 in process A can refer to a different file than fd 4 in process B
○ there's a max number (NOFILE) of open files for each process

■ each process should know its fd to file mapping

● Kernel needs to deallocate file descriptors upon close
○ close(1) means that fd 1 is now available to be recycled and given out via open

29

File Information

The current xk file system only implements a primitive
inode layer, so you need to create a file abstraction
yourself. You need to track at least the following
information for each open file:

● In memory reference count
● A pointer to the inode of the file
● Current offset
● Access permissions (readable or writable)

File Info Struct

30

Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2

File
Struct
Index

NFILE - 2

File
Struct
Index

NFILE - 1

= In use = Available
31

Inode Layer

iopen() = looks up an inode using a given path (populates and loads inode into memory if necessary),
increments the inode’s reference count

irelease() = decrements this inode’s reference count (internally, once the reference count is 0, this inode is
removed from the inode cache)

readi() / concurrentreadi() = read data using this inode

writei() / concurrentwritei() = write data using this inode

locki() and unlocki() = locks or unlocks the inode (this does NOT change the inode’s reference count)

File layer provides “policy” for accessing files, inode layer provides “mechanism” for reading/writing

Note: For Lab 1, it is likely not necessary to call locki() or unlocki() directly

32

Lab 1: Start Early!

- It takes time to set up and navigate the code base
- Compile Time Issues
- Getting comfortable with gdb

33

Git Resources

- Git manual: https://git-scm.com/docs/user-manual
- Git tutorial: https://learngitbranching.js.org/?locale=en_US

34

https://git-scm.com/docs/user-manual
https://learngitbranching.js.org/?locale=en_US

