CSE 451; Section 1

C, GDB, Lab 1intro
/4[24

Overview

1) Review of C

2) Tools for debugging

3) Office hours, discussion board
4) Lab1intro

Review of C

Pointers & Addresses

e &: Gets the address of where something is stored in (virtual) memory
o a32/64 bit (4/8 byte) number
o you can do arbitrary math to a pointer value (might end up with an invalid address......)
m Ptr++ Increments address by the size of the pointed to type
m no pointer arithmetic on a void pointer!

e *: Dereferencing, “give me whatever is stored in memory at this address”.
o dereferencing invalid addresses (nullptr, random address) causes a segfault!

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

void increment(intx ptr) { « Pass in a pointer
xptr = xptr + 1; ptr = address of an int
} *ptr = value stored at the address ptr

void example() {
int x = 3¢
increment (&x); : ‘ «— Gets the address at which ‘x’ resides in memory

}

Pointers & Addresses

void class_string(charxk strptr) {

xstrptr = "class";
}
void example() {
charkx str = "hello"; // what would strlen(str)return?

charx str2 = str;
class_string(&str2); // what would printf(str2) output?
}

Find the bug %,

struct elem {
int value;
struct elem *xnext;

F:

int example(struct elemk e) {
if (e !'= NULL) {
return e->next—>value;

}

return -1;

}

Find the bug %,

struct elem {
int value;
struct elem *xnext;

}:

void increment(struct elem xe) {
if (e != NULL) {
e—>value += 1;

}

void example() {
struct elem xe;
increment(e);

I

Find the bug %,

struct elem {
int value;
struct elem sknext;

5

struct elemk alloc_elem() {
struct elem e;
return &e;

}

void example() {
struct elemk e = alloc_elem();

{

if (e != NULL)
e—>value = 0;

}

L

Tools For Debugging

Old Friend: Printf

Prints are very useful for simple debugging:

How far have we reached in a function?
How many times did we meet a condition?
Function invocations & its parameters

However, sometimes prints are not enough:

bugs in your code can impact printfs in unexpected ways

printf grabs a console lock that may make the bug difficult to reproduce
printf uses a buffer internally, so prints might be interleaved

can't print in assembly

11

New Friend:

This is a systems class and you'll be doing a LOT of debugging
Also lots of pointers.
Really, the pointers are the main reason for the debugging

12

GDB commands to know: a non-exhaustive list

e gdb path/to/exe

e run: start execution of the given executable

e n:run the next line of code. If it's a function, execute it entirely.
o ni: Same behavior, but goes one assembly instruction at a time instead.

e s:runthe next line of code. If it's a function, stepinto it
o si:Same as “s”, but goes one assembly instruction at a time instead.

e C:run the rest of the program until it hits a breakpoint or exits

GDB commands to know: a non-exhaustive list

: set a breakpoint for the given function or line (e.g. “b

file.c:foo”)
e bt: get the stack trace to the current point
e up/down: go up/down function stack frames in the backtrace

e (rwatch : set a breakpoint for the given thing being accessed

e p_____ : print the value of the given thing

o (Canunderstand C-style variable syntax, e.g.: p *((struct my_struct®) ptr) interprets
the memory pointed to by ptr as a “struct my_struct".

o X : examine the memory at an address. Many flags

14

Reading symbols from a.out...done.
[(gdb) b main
= Breakpoint 1 at 0x40060d: file example.c, line 13.
#include <stdio.h> [(gdb) b 5
Breakpoint 2 at 0x4005e9: file example.c, line 5.

void increment(int *ptr) { [(gdb) run
if (ptr == NULL) { Starting program: /homes/iws/jlli/a.out

‘ exitiiii Breakpoint 1, main () at example.c:13
X 13 printf("starting value for a: %d, b: %d, c: %d\n", a, b, c);
*ptr +=1; [(gdb) print a
} $1=10
[(gdb) print b

$2=10
int main() { [(gdb) print c

S R by e $3 = 32767

R ; ; ; [(gdb) n
printf("starting value for a: %d, b: %d, c: %d\n", a, b, c); starting value for a: @, b: @, c: 32767
increment(a); 14 increment(a);

increment(a); [(gdb) c
' Continuing.

1
2
s
4
5
6
7
8
5

10

11

F‘HNHUH
Joo s N

increment (NULL);
2 B int 2, 1 t (ptr=0x0) at le.c:5
return @; // never reaches here o ;xi:?;?:e" L4 L e

=
o

5

[(gdb) bt
#0 increment (ptr=0x@) at example.c:5

#1 0x0000000000400634 in main () at example.c:14
(gdb)

N =
S ©

GDB Cheatsheet

See this GDB cheatsheet for a good overview of what's possible:
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

16

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Logistics

Regarding office hours

e There are a /ot of strange ways you can break xk

e Unlike in other classes, there are many functional ways to structure
your code (no one right answer)

e Going through GDB in office hours is way too slow

e Please do preliminary debugging as far as you can before office
hours, so we can give useful advice

e For particularly weird issues, we might not be able to solve your
bug within available time constraints

18

Discussion Board

If you've tried debugging and have come up against a wall that would take too
long for office hours, consider posting on the discussion board.

Include DETAILS

What is the problem (What did you expect to see? What actually
happened?)

Which methods does it manifest in

What does work

What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be
helpful is directly influenced by the quantity of useful debugging information you
provide.

19

Reminders

e Find alab partner and fill out the form by tomorrow!
e Read through lab 1 handout and other relevant docs

20

https://docs.google.com/forms/d/e/1FAIpQLSdT48eeZp4Cs4Xqcb1iYuXJNf6iFwio5dldE6d_uQQSCvovNA/viewform?usp=sf_link

[.ab 1 Intro

What is xk?

- xk stands for “experimental kernel”

- Configured to run on gemu (hw emulator)
- A simpler version of the early linux kernel
- 64 bit port of xv6

22

https://en.wikipedia.org/wiki/Xv6

Different components of the xk kernel (roughly)

Syscalls
File System

- file.c deals with open files management and managing the file info struct (lab1)

- fs.cdeals with writing and reading blocks from disk and other helper functions (lab4)
Processes

- fork/exec/wait implementation

- proc.c and exec.c (lab 2)
Memory management

- writing the page fault handler (for stack, heap, and else) , trap.c (lab3)

23

Where to start?

https://qitlab.cs.washington.edu/xk-public/24wi

Some suggested reading:

lab/lab1.md - Assignment write-up (definitely read this one)
docs/xk/overview.md - A description of the xk codebase (reference;
skimming the baseline code walkthrough section might be helpful)
docs/xk/memory.md - An overview of memory management in xk (mostly
relevant for lab 3)

docs/xk/debugging.md - A guide to understanding error messages
lab/lab1design.md - A design doc for the lab 1 code

o You will be in charge of writing design docs for the future labs (which will be a bit more
comprehensive than the one provided for lab 1). Check out lab/designdoc.md for details.

24

https://gitlab.cs.washington.edu/xk-public/24wi

Summary of Lab 1

e Setup your xk repo
e Read and learn about existing code
e Support file API (through syscalls)

o syscall validation (checking for valid args etc.)
o open file (I/O) abstraction

m user: file descriptor

m kernel: file_info

25

File API fd = file descriptor

fd = open(filename)

Returns a per-process handle to be used in subsequent calls (implemented as a C int)
Shell pre-assigns stdin, stdout as file descriptors (0, 1)

read/write(fd, buffer, numBytes)
Read or write numBytes into/out of buffer, changes position in file

new_fd = dup(fd)
Make a new file descriptor, copy of the previous one (used in shell)

close(fd)
We're done with using this file descriptor

26

File API

e File descriptors
o used for all I/O, eg, network sockets, pipes for interprocess communication
o applications use read/write regardless of what it is reading/writing to
o per-process
m but can be passed between processes
m inherited by child processes
e important for how fork/exec and the shell works
e examples: Is|wc s > tmpfile wc < tmpfile

e Kernel should not trust file descriptor (might not be previously opened, etc.)
o applications should not be able to crash kernel

27

File Syscalls

You will need to implement a number of file related system calls.
Implementing syscalls consists of two steps:

- parsing and validating syscall arguments
- see implemented syscalls for reference (sysfile.c)
- argptr, argstr, argint, what do these functions do?

- perform the requested file operations
- need to write your own file operations using the provide inode layer (file.c)

28

File Descriptors - Kernel View

e Kernel needs to give out file descriptors upon open
o must be give out the smallest available fd
o fds are unique per process
m e.g.fd4in process A can refer to a different file than fd 4 in process B
o there's a max number (NOFILE) of open files for each process
m each process should know its fd to file mapping

e Kernel needs to deallocate file descriptors upon close
o close(1) means that fd 1is now available to be recycled and given out via open

29

File Information

The current xk file system only implements a primitive
inode layer, so you need to create a file abstraction
yourself. You need to track at least the following
information for each open file:

In memory reference count

A pointer to the inode of the file

Current offset

Access permissions (readable or writable)

File Info Struct

30

Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs

File File File File
Struct

Struct Struct Struct

Index 0 Index 1 Index 2 Index

NFILE - 2

= Available

File
Struct

Index
NFILE -1

31

Inode Layer

iopen() = looks up an inode using a given path (populates and loads inode into memory if necessary),
increments the inode’s reference count

irelease() = decrements this inode’s reference count (internally, once the reference count is 0, this inode is
removed from the inode cache)

readi() / concurrentreadi() = read data using this inode
writei() / concurrentwritei() = write data using this inode

locki() and unlocki() = locks or unlocks the inode (this does NOT change the inode’s reference count)

File layer provides “policy” for accessing files, inode layer provides “mechanism” for reading/writing

Note: For Lab 1, it is likely not necessary to call locki() or unlocki() directly

32

Lab 1: Start Early!

- It takes time to set up and navigate the code base
- Compile Time Issues
- Getting comfortable with gdb

33

Git Resources

- Git manual: https://git-scm.com/docs/user-manual
- Git tutorial: https://learngitbranching.js.org/?locale=en_US

34

https://git-scm.com/docs/user-manual
https://learngitbranching.js.org/?locale=en_US

