Address translation and page faults (refresher!)

Recall how address translation works

What mechanism causes a page fault to occur?
How does OS handle a page fault?

- Page Fault (an exception) causes system to be entered
- System saves state of running process, then vectors to page fault handler routine
 - find or create (through eviction) a page frame into which to load the needed page (1)
 - if I/O is required, run some other process while it’s going on
 - find the needed page on disk and bring it into the page frame (2)
 - run some other process while the I/O is going on
 - fix up the page table entry
 - mark it as “valid,” set “referenced” and “modified” bits to false, set protection bits appropriately, point to correct page frame
 - put the process on the ready queue
• **(2)** Find the needed page on disk and bring it into the page frame
 – processor makes process ID and faulting virtual address available to page fault handler
 – process ID gets you to the base of the page table
 – VPN portion of VA gets you to the PTE
 – data structure analogous to page table (an array with an entry for each page in the address space) contains disk address of page
 – at this point, it’s just a simple matter of I/O
 • must be positive that the target page frame remains available!
 – or what?
• **(1)** Find or create (through eviction) a page frame into which to load the needed page
 - run page replacement algorithm
 - free page frame
 - assigned but unmodified (“clean”) page frame
 - assigned and modified (“dirty”) page frame
 - assigned but “clean”
 - find PTE (may be a different process!)
 - mark as invalid (disk address must be available for subsequent reload)
 - assigned and “dirty”
 - find PTE (may be a different process!)
 - mark as invalid
 - write it out
– OS may speculatively maintain lists of clean and dirty frames selected for replacement
 • May also speculatively clean the dirty pages (by writing them to disk)
“Issues”

• Memory reference overhead of address translation
 – 2 references per address lookup (page table, then memory)
 – solution: use a hardware cache to absorb page table lookups
 • translation lookaside buffer (TLB)
• Memory required to hold page tables can be huge
 – need one PTE per page in the virtual address space
 – 32 bit AS with 4KB pages = 2^{20} PTEs = 1,048,576 PTEs
 – 4 bytes/PTE = 4MB per page table
 • OS’s typically have separate page tables per process
 • 25 processes = 100MB of page tables
 – 48 bit AS, same assumptions, 64GB per page table!
Solution 1 to (2): Page the page tables

• Simplest notion:
 – Put user page tables in a pageable segment of the system’s address space
 • The OS page table maps the portion of the VAS in which the user process page tables live
 – Pin the system’s page table(s) in physical memory
 • So you can never fault trying to access them
 – When you need a user page table entry
 • It’s in the OS virtual address space, so need the OS page table to translate to a physical address
 • You cannot fault on accessing the OS page table (because it’s pinned)
 • The OS page table might indicate that the user page table isn’t in physical memory
 – That’s just a regular page fault

• This isn’t exactly what’s done any longer
 – Although it is exactly what VAX/VMS did!
 – And it’s a useful model, and a component, for what’s actually done
Solution 2 to (2): Multi-level page tables

• How can we reduce the physical memory requirements of page tables?
 – observation: only need to map the portion of the address space that is actually being used (often a tiny fraction of the total address space)
 • a process may not use its full 32/48/64-bit address space
 • a process may have unused “holes” in its address space
 • a process may not reference some parts of its address space for extended periods
 – all problems in CS can be solved with a level of indirection!
 • two-level (three-level, four-level) page tables
Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
 – master page number, secondary page number, offset
 – master PT maps master PN to secondary PT
 – secondary PT maps secondary PN to page frame number
 – offset and PFN yield physical address
Two level page tables
A generic idealized picture

<table>
<thead>
<tr>
<th>master page #</th>
<th>secondary page#</th>
<th>offset</th>
</tr>
</thead>
</table>

virtual address

physical memory

<table>
<thead>
<tr>
<th>page frame 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>page frame 1</td>
</tr>
<tr>
<td>page frame 2</td>
</tr>
<tr>
<td>page frame 3</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>page frame Y</td>
</tr>
</tbody>
</table>

master page table

secondary page table

page frame number

physical address

page frame # offset
Here is an actual PDE/PTE

Page-Directory Entry (4-KByte Page Table)

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page-Table Base Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available for system programmer’s use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global page (Ignored)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page size (0 indicates 4 KBytes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved (set to 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cache disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Write-through</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User/Supervisor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
</tr>
</tbody>
</table>

Page-Table Entry (4-KByte Page)

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page Base Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available for system programmer’s use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Page</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page Table Attribute Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dirty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cache Disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Write-Through</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User/Supervisor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
</tr>
</tbody>
</table>

2/16/2024
Another view of the 2-level page table
• Example:
 – 32-bit address space, 4KB pages, 4 bytes/PTE
 • how many bits in offset?
 – need 12 bits for 4KB ($2^{12}=4K$), so offset is 12 bits
 • want master PT to fit in one page
 – 4KB/4 bytes = 1024 PTEs
 – thus master page # is 10 bits ($2^{10}=1K$)
 – and there are 1024 secondary page tables
 • and 10 bits are left (32-12-10) for indexing each secondary page table
 – hence, each secondary page table has 1024 PTEs and fits in one page
Generalizing

- Early architectures used 1-level page tables
- VAX, P-II used 2-level page tables
- SPARC used 3-level page tables
- 68030 used 4-level page tables
- Key thing is that the outer level must be wired down (pinned in physical memory) in order to break the recursion – no smoke and mirrors
Intel’s 5 level paging

5 level paging overview

Linear-Address Translation Using 5-Level Paging

- CR3[51:12] contains physical address of PML5 table;
- linear adress bits 56:48 select an PML5E;
- PML5E contains physical address of PML4 table;
- page walk follows using linear address bits 47:0.
Alternatives

• Hashed page table (great for sparse address spaces)
 – VPN is used as a hash
 – collisions are resolved because the elements in the linked list at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)
 – one entry per page frame
 – includes process id, VPN
 – hard to search! (but IBM PC/RT actually did this!)
Making it all efficient

- Original page table scheme doubled the cost of memory lookups
 - one lookup into page table, a second to fetch the data
- Two-level page tables triple the cost!!
 - two lookups into page table, a third to fetch the data
- How can we make this more efficient?
 - goal: make fetching from a virtual address about as efficient as fetching from a physical address
 - solution: use a hardware cache inside the CPU
 - cache the virtual-to-physical translations in the hardware
 - called a translation lookaside buffer (TLB)
 - TLB is managed by the memory management unit (MMU)
TLBs

• Translation lookaside buffer
 – translates virtual page #s into PTEs (not physical address)

• TLB is implemented in hardware
 – is a fully associative cache (all entries searched in parallel)
 – cache tags are virtual page numbers
 – cache values are PTEs (including protection, valid bit!)
 – with PFN(from PTE) + offset, MMU can directly calculate the physical address

• TLBs exploit locality
 – processes only use a handful of pages at a time
 • can hold the “hot set” or “working set” of a process
 – hit rates in the TLB are therefore really important for performance
Associative and Direct mapping

• A side note about caches.
• Fully, N-way, and Direct – where to lookup entries in the cache.
• Cost difference of implementing a fully versus direct mapped cache.

<table>
<thead>
<tr>
<th>Page#</th>
<th>PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td></td>
</tr>
<tr>
<td>def</td>
<td></td>
</tr>
<tr>
<td>ghi</td>
<td></td>
</tr>
<tr>
<td>jkl</td>
<td></td>
</tr>
<tr>
<td>mno</td>
<td></td>
</tr>
<tr>
<td>pqr</td>
<td></td>
</tr>
<tr>
<td>stu</td>
<td></td>
</tr>
<tr>
<td>vyx</td>
<td></td>
</tr>
</tbody>
</table>

Page# xyz
Intel i7 Skylake TLB

• TLB has cached levels, too
• Sizes
 – L1:
 • 32Kb for each I/D cache, 4/5 clocks to access
 • 128/64 I/D TLB entries, one clock to access, 9 clocks penalty
 – L2:
 • 256Kb, 12 clocks to access
 • 1536 TLB entries, 14 clocks to access, 17 clocks penalty
 – L3:
 • 8Mb, 42 clocks to access
Managing TLBs

• **Address translations are mostly handled by the TLB**
 – >99% of translations, but there are **TLB misses** occasionally
 – in case of a miss, translation is placed into the TLB, values are evicted. Selection algorithm is proprietary

• **Hardware** *(memory management unit (MMU))*
 – knows where page tables are in memory
 • OS maintains them, HW access them directly
 – tables have to be in HW-defined format
 – this is how x86 works
 • And that was part of the difficulty in virtualizing the x86 …

• **Software** loaded TLB (OS)
 – TLB miss faults to OS, OS finds right PTE and loads TLB
 – must be fast (but, 20-1000 cycles typically)
 • CPU ISA has instructions for TLB manipulation
 • OS gets to pick the page table format
Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
 – when OS changes protection bits in a PTE, it needs to invalidate the PTE if it is in the TLB

• What happens on a process context switch?
 – remember, each process typically has its own page tables
 – need to invalidate all the entries in TLB! (flush TLB)
 • this is a big part of why process context switches are costly
 – can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a cached PTE must be evicted
 – choosing a victim PTE is called the “TLB replacement policy”
Functionality enhanced by page tables

• **Code (instructions) is read-only**
 – A bad pointer can’t change the program code

• **Dereferencing a null pointer is an error caught by hardware**
 – Don’t use the first page of the virtual address space – mark it as invalid – so references to address 0 cause an interrupt

• **Inter-process memory protection**
 – My address XYZ is different that your address XYZ

• **Shared libraries**
 – All running C programs use libc
 – Have only one (partial) copy in physical memory, not one per process
 – All page table entries mapping libc point to the same set of physical frames
 • DLL’s in Windows
Loading Shared Libraries

- libC appears in both virtual address spaces
- It doesn’t have to be in the same virtual address location, but we (the OS) try to make this happen
- As a rule of thumb each library has a preferred virtual address location (makes loading the library a whole lot easier)
Shared Libraries

• But after a while we might run out of address space to share all the libraries. Therefore we need to be able to dynamically relocate them.

• What happens if we need to load another library called libWW, whose preferred address collides with libW? Oh, the trouble we cause.
More functionality

• **Generalizing the use of “shared memory”**
 – Regions of two separate processes’s address spaces map to the same physical frames
 – Why? Faster inter-process communication
 • Just read/write from/to shared memory
 • Don’t have to make a syscall
 – Will have separate PTE’s per process, so can give different processes different access rights
 • E.g., one reader, one writer

• **Copy-on-write (CoW), e.g., on fork()**
 – Instead of copying all pages, create shared mappings of parent pages in child address space
 • Make shared mappings read-only for both processes
 • When either process writes, fault occurs, OS “splits” the page
A bizarre shared memory case

- Can double, triple, quadruple,… map the same physical address multiple times within the same process.
- All at different virtual address locations.
- Why do this? I don’t know.
- But possible to do. Yes.
Less familiar uses

- **Memory-mapped files**
 - instead of using open, read, write, close
 - “map” a file into a region of the virtual address space
 - e.g., into region with base ‘X’
 - accessing virtual address ‘X+N’ refers to offset ‘N’ in file
 - initially, all pages in mapped region marked as invalid
 - Using a “table that looks like a page table”…
 - OS reads a page from file whenever invalid page accessed
 - OS writes a page to file when evicted from physical memory
 - only necessary if page is dirty
Memory Mapped Files

- Forget about doing reads and writes, just touch the memory and the result is propagated back to the file
- Can move the mapping to anywhere in the file
Memory mapped files

• Imagine you have a pointer-based, in-memory data structure, like a tree
• You want to preserve it across runs
• Usual approach:
 – Serialize on way from memory to a disk file, deserialize on way from file back to memory
 • E.g., to serialize, perform a depth-first traversal, writing each node to disk as you go; to deserialize, do the opposite
• Potentially easier
 – Allocate tree nodes in a “region”
 – Treat the memory region as a file, using the memory-mapped file facility
 – Normal paging causes changes to be pushed to disk; the file is still there next time you run
 – What happens if you crash? Uh oh…
More unusual uses

- **Soft faults**: faults on pages that are actually in memory, but whose PTE entries have artificially been marked as invalid. Resolving such a soft fault is relatively cheap compared to reading in the page from backend storage.
- That idea can be used whenever it would be useful to trap on a reference to some data item
- Example: debugger watchpoints
 - How?
- Windows as we will see also uses soft faults in its page replacement strategy.
Summary

• We know how address translation works in the “vanilla” case (single-level page table, no fault, no TLB)
 – hardware splits the virtual address into the virtual page number and the offset; uses the VPN to index the page table; concatenates the offset to the page frame number (which is in the PTE) to obtain the physical address

• We know how the OS handles a page fault
 – find or create (through eviction) a page frame into which to load the needed page
 – find the needed page on disk and bring it into the page frame
 – fix up the page table entry
 – put the process on the ready queue
• We’re aware of two “gotchas” that complicate things in practice
 – the memory reference overhead of address translation
 • the need to reference the page table doubles the memory traffic
 • solution: use a hardware cache (TLB = translation lookaside buffer) to absorb page table lookups
 – the memory required to hold page tables can be huge
 • solution: use multi-level page tables; can page the lower levels, or at least omit them if the address space is sparse
 – this makes the TLB even more important, because without it, a single user-level memory reference can cause two or three or four page table memory references … and we can’t even afford one!
• TLB details
 – Implemented in hardware
 • fully associative cache (all entries searched in parallel)
 • cache tags are virtual page numbers
 • cache values are page table entries (page frame numbers)
 • with PTE + offset, MMU can directly calculate the physical address
 – Can be small because of locality
 • 16-48 entries can yield a 99% hit ratio
 – Searched before the hw or OS walks the page table(s)
 • hit: address translation does not require an extra memory reference (or two or three or four) – “free”
 • miss: walk the page table(s) to translate the address; this translation is put into the TLB, evicting some other translation; typically managed LRU
– On context switch
 • TLB must be purged/flushed (using a special hardware instruction) unless entries are tagged with a process ID
 – otherwise, the new process will use the old process’s TLB entries and reference its page frames!

• Cool tricks
 – Read-only code
 – Dereferencing a null pointer is an error
 – Inter-process memory protection
 – Shared libraries
 – Inter-process communication
 – Shared memory
 – Copy-on-write
 – Memory-mapped files
 – Soft faults (e.g., debugger watchpoints)