Goals of memory management

• Allocate memory resources among competing processes, maximizing memory utilization and system throughput

• Provide isolation between processes
 – We have come to view “addressability” and “protection” as inextricably linked, even though they’re really orthogonal

• Provide a convenient abstraction for programming (and for compilers, etc.)
Tools of memory management

- Base and limit registers
- Swapping
- Paging (and page tables and TLB’s)
- Segmentation (and segment tables)
- Page faults => page fault handling => virtual memory
- The policies that govern the use of these mechanisms
Today’s server, desktop, laptop, tablet, and phone systems

• The basic abstraction that the OS provides for memory management is **virtual memory** (VM)
 – Efficient use of hardware (real memory)
 • VM enables programs to execute without requiring their entire address space to be resident in physical memory
 • Many programs don’t need all of their code or data at once (or ever – branches they never take, or data they never read/write)
 • No need to allocate memory for it, OS should adjust amount allocated based on *run-time* behavior
 – Program flexibility
 • Programs can execute on machines with less RAM than they “need”
 – On the other hand, paging is really slow, so must be minimized!
 – Protection
 • Virtual memory *isolates* address spaces from each other
 • One process cannot name addresses visible to others; each process has its own isolated address space
VM requires hardware and OS support

- MMU’s (Memory Management Unit), TLB’s (Translation Lookaside Buffer), page tables, page fault handling, …

- Typically accompanied by swapping, and at least limited segmentation
A trip down Memory Lane …

• Why?
 – Because it’s instructive
 – Because embedded processors (98% or more of all processors) typically don’t have virtual memory
 – Because some aspects are pertinent to allocating portions of a virtual address space – e.g., malloc()

• First, there was job-at-a-time batch programming
 – programs used physical addresses directly
 – OS loads job (perhaps using a relocating loader to “offset” branch addresses), runs it, unloads it
 – what if the program wouldn’t fit into memory?
 • manual overlays!

• An embedded system may have only one program!
• Then came Swapping
 – save a program’s entire state (including its memory image) to disk
 – allows another program to be run
 – first program can be swapped back in and re-started right where it was

 – The first timesharing system, MIT’s “Compatible Time Sharing System” (CTSS) (circa 1961), was a uni-programmed swapping system
 • only one memory-resident user
 • upon request completion or quantum expiration, a swap took place
 • slow … but it worked!

• A later system, MULTICS (circa 1967) furthered OS development
• Then came multiprogramming
 – multiple processes/jobs in memory at once
 • to overlap I/O and computation between processes/jobs, easing the task of the application programmer
 – memory management requirements:
 • protection: restrict which addresses processes can use, so they can’t stomp on each other
 • fast translation: memory lookups must be fast, in spite of the protection scheme
 • fast context switching: when switching between jobs, updating memory hardware (protection and translation) must be quick
Virtual addresses for multiprogramming

• To make it easier to manage memory of multiple processes, make processes use virtual addresses
 – virtual addresses are independent of location in physical memory (RAM) where referenced data lives
 • OS determines location in physical memory
 – instructions issued by CPU reference virtual addresses
 • e.g., pointers, arguments to load/store instructions, PC …
 – virtual addresses are translated by hardware into physical addresses (with some setup from OS)
• The set of virtual addresses a process can reference is its **address space**
 – many different possible mechanisms for translating virtual addresses to physical addresses
 • we’ll take a historical walk through them, ending up with our current techniques

• **Note: We are not yet talking about paging, or virtual memory**
 – Only that the program issues addresses in a virtual address space, and these must be **translated** to reference memory (the physical address space)
 – For now, think of the program as having a contiguous virtual address space that starts at 0, and a contiguous physical address space that starts somewhere else
Some important terms to remember

- Virtual Memory
- Virtual Address
- Address Space

- And now onto some oldish virtual memory model techniques…
Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
 – partitions may have different sizes, but partitioning never changes
 – hardware requirement: base register, limit register
 • physical address = virtual address + base register
 • base register loaded by OS when it switches to a process
 – how do we provide protection?
 • if (physical address > base + limit) then… ?

• Advantages
 – Simple

• Problems
 – internal fragmentation: the available partition is larger than what was requested
 – external fragmentation: two small partitions left, but one big job – what sizes should the partitions be??
Mechanics of fixed partitions

Limit register: 2K
Base register: P2's base: 6K
Offset

Virtual address

< ?

yes

no

raise protection fault

Physical memory

partition 0
partition 1
partition 2
partition 3

0
2K
6K
8K
12K
Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up into partitions dynamically – partitions are tailored to programs
 – hardware requirements: base register, limit register
 – physical address = virtual address + base register
 – how do we provide protection?
 • if (physical address > base + limit) then… ?

• Advantages
 – no internal fragmentation
 • simply allocate partition size to be just big enough for process (assuming we know what that is!)

• Problems
 – external fragmentation
 • as we load and unload jobs, holes are left scattered throughout physical memory
 • slightly different than the external fragmentation for fixed partition systems
Mechanics of variable partitions

- Physical memory
- Offset
 - Virtual address
 - Limit register: P3’s size
 - Base register: P3’s base
 - Offset <? yes
 - P3’s base + offset
 - Offset <? no
 - Raise protection fault
- Partitions:
 - Partition 0
 - Partition 1
 - Partition 2
 - Partition 3
 - Partition 4
Dealing with fragmentation

- Compact memory by copying
 - Swap a program out
 - Re-load it, adjacent to another
 - Adjust its base register
 - “Lather, rinse, repeat”
 - Ugh
Modern technique: Paging

• Solve the external fragmentation problem by using fixed sized units in both physical and virtual memory
• Mitigate the internal fragmentation problem by making the units small
Life is easy …

• For the programmer …
 – Processes view memory as a contiguous address space from bytes 0 through N – a *virtual address space*
 – N is independent of the actual hardware
 – In reality, virtual pages are scattered across physical memory frames – not contiguous as earlier
 • Virtual-to-physical mapping
 • This mapping is *invisible* to the program

• For the memory manager …
 – Efficient use of memory, because very little internal fragmentation
 – No external fragmentation at all
 • No need to copy big chunks of memory around to coalesce free space
• For the protection system
 – One process cannot “name” another process’s memory – there is complete isolation
 • The virtual address 0xDEADBEEF maps to different physical addresses for different processes

Note: Assume for now that all pages of the address space are resident in memory – no “page faults”
Address translation

• To go from a virtual address to a physical address, we add a level of indirection called a **Page Table**

• Translating virtual addresses
 – a virtual address has two parts: *virtual page number & offset*
 – virtual page number (VPN) is an index into a *page table*
 – page table entry contains *page frame number (PFN)*
 – physical address is *PFN::offset* (concatenated together)

• Page tables
 – managed by the OS
 – one page table entry (PTE) per page in virtual address space
 • i.e., one PTE per VPN
 – map virtual page number (VPN) to page frame number (PFN)
 • VPN is simply an index into the page table
Paging (K-byte pages)

process 0
```
<table>
<thead>
<tr>
<th>page</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
```

process 1
```
<table>
<thead>
<tr>
<th>page</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
```

virtual address space
```
0  page 0
  page 1
2K
```

physical memory
```
0  page frame 0
1K  page frame 1
2K  page frame 2
3K  page frame 3
4K  page frame 4
5K  page frame 5
6K  page frame 6
7K  page frame 7
8K  page frame 8
9K  page frame 9
10K
```

Page fault – next lecture!
Mechanics of address translation

virtual address

virtual page # | offset

page table

page frame #

physical address

physical memory

page frame # | offset

page frame 0

page frame 1

page frame 2

page frame 3

...

page frame Y
Example of address translation

• Assume 32 bit addresses
 – assume page size is 4KB (4096 bytes, or \(2^{12}\) bytes)
 – VPN is 20 bits long (\(2^{20}\) VPNs), offset is 12 bits long

• Let’s translate virtual address 0x13325328
 – VPN is 0x13325, and offset is 0x328
 – assume page table entry 0x13325 contains value 0x03004
 • page frame number is 0x03004
 • VPN 0x13325 maps to PFN 0x03004
 – physical address = PFN::offset = 0x03004328
Page Table Entries – an opportunity!

- As long as there’s a PTE lookup per memory reference, we might as well add some functionality
 - We can add protection
 - A virtual page can be read-only, and result in a fault if a store to it is attempted
 - Some pages may not map to anything – a fault will occur if a reference is attempted
 - We can add some “accounting information”
 - Can’t do anything fancy, since address translation must be fast
 - Can keep track of whether or not a virtual page is being used, though
 - This will help the paging algorithm, once we get to paging
Page Table Entries (PTE’s)

- PTE’s control mapping (a generic/stylized version)
 - the valid bit says whether or not the PTE can be used
 - says whether or not a virtual address is valid
 - it is checked each time a virtual address is used
 - the referenced bit says whether the page has been accessed
 - it is set when a page has been read or written to
 - the modified bit says whether or not the page is dirty
 - it is set when a write to the page has occurred
 - the protection bits control which operations are allowed
 - read, write, execute
 - the page frame number determines the physical page
 - physical page start address = PFN
Paging advantages

• Easy to allocate physical memory
 – physical memory is allocated from free list of frames
 • to allocate a frame, just remove it from the free list
 – external fragmentation is not a problem
 • managing variable-sized allocations is a huge pain in the neck
 – “buddy system”

• Leads naturally to virtual memory
 – entire program need not be memory resident
 – take page faults using “valid” bit
 – all “chunks” are the same size (page size)
 – but paging was originally introduced to deal with external fragmentation, not to allow programs to be partially resident
Paging disadvantages

- Can still have internal fragmentation
 - Process may not use memory in exact multiples of pages
 - But minor because of small page size relative to address space size
- Memory reference overhead
 - 2 references per address lookup (page table, then memory)
 - Solution: use a hardware cache to absorb page table lookups
 - translation lookaside buffer (TLB) – next class
- Memory required to hold page tables can be large
 - need one PTE per page in virtual address space
 - 32 bit AS with 4KB pages = 2^{20} PTEs = 1,048,576 PTEs
 - 4 bytes/PTE = 4MB per page table
 - OS’s have separate page tables per process
 - 25 processes = 100MB of page tables
 - Solution: page the page tables (!!!)
 - (ow, my brain hurts…more later)
Segmentation
(We will be back to paging soon!)

• Paging
 – mitigates various memory allocation complexities (e.g., fragmentation)
 – view an address space as a linear array of bytes
 – divide it into pages of equal size (e.g., 4KB)
 – use a page table to map virtual pages to physical page frames
 • page (logical) => page frame (physical)
 – One problem with paging is that is not very logical (i.e., programmer friendly)

• Segmentation
 – partition an address space into logical units
 • stack, code, heap, subroutines, …
 – a virtual address is <segment #, offset>
What’s the point?

• More “logical”
 – absent segmentation, a linker takes a bunch of independent modules that call each other and linearizes them
 – they are really independent; segmentation treats them as such

• Facilitates sharing and reuse
 – a segment is a natural unit of sharing – a subroutine or function

• A natural extension of variable-sized partitions
 – variable-sized partition = 1 segment/process
 – segmentation = many segments/process
Hardware support

• Segment table
 – multiple base/limit pairs, one per segment
 – segments named by segment #, used as index into table
 • a virtual address is \langlesegment #, offset\rangle
 – offset of virtual address added to base address of segment to yield physical address
Segment lookups

virtual address

segment #

offset

segment table

limit

base

physical memory

segment 0

segment 1

segment 2

segment 3

segment 4

raise protection fault

no

<?

yes

+
Pros and cons

• Yes, it’s “logical” and it facilitates sharing and reuse
• But it has all the horror of a variable partition system
 – except that linking is simpler, and the “chunks” that must be
 allocated are smaller than a “typical” linear address space
• What to do?
Combining segmentation and paging

• Can combine these techniques
 – modern architectures support both segments and paging

• Use segments to manage logical units
 – segments vary in size, but are typically large (multiple pages)

• Use pages to partition segments into fixed-size chunks
 – each segment has its own page table
 • there is a page table per segment, rather than per user address space
 – memory allocation becomes easy once again
 • no contiguous allocation, no external fragmentation

<table>
<thead>
<tr>
<th>Segment #</th>
<th>Page #</th>
<th>Offset within page</th>
</tr>
</thead>
</table>

Offset within segment
How Intel combines segments and pages

Figure 11-16. Combined Segment and Page Address Translation
Mixing segments and pages

Figure 11-17. Each Segment Can Have Its Own Page Table
• Linux:
 – 1 kernel code segment, 1 kernel data segment
 – 1 user code segment, 1 user data segment
 – all of these segments are paged

• Note: this is a very limited/boring use of segments!