LLab 3 More

Memory Management




Reminder

e Lab 3 Code due Monday 5/13/24
e Pset 5 Due Tomorrow! 5/10/24
e Pset 6 Out Tomorrow! 5/10/24

o Due 5/17/24



Today’s Agenda

More detail on vspace and vspace functions
xk physical memory management

Some discussion questions on lab 3

Q&A time/Open OH



vspace Structs



Let’s talk virtual

Continuing from last week: you'll be finagling and wrangling
virtual memory in Lab 3. So let’s understand what you're
wrangling.



vpage_info

struct vpage_info {
short used; // whether the page is in use
uinté4_t ppn; // physical page number
short present; // whether the page is in physical memory

short writable; // does the page have write permissions
// user defined fields

A struct vpage_info describes characteristics of the virtual page that we are

pointing to, e.g used, physical page number, present, writable



vpl_page

struct vpi_page {
struct vpage_info infos[VPIPPAGE]; // info struct for the given page

struct vpi_page *next; // the next page

¥

e A vpi_page is a container of vpage_info's
o (vpi_page = “virtual page info page”).

e Avregion is made up of a linked list of vpi_pages.
o (vregion can grow dynamically as needed)

e |t stores an array of infos plus enough space for a pointer to a "next"

vpi_page struct.



vspace Visual Diagram

struct proc

struct
vspace

vpi_page

vregion

infos[0]

vregion

vregion

Machine dependent
page table in
RAM/TLB

infos[1]

infos[2]

struct vpage_info

used

ppn

present

writeable




vregions vs Page Tables

Ok so the vspace is made up of regions and the page table...

e What's the difference between xk's vregions and the page
table?



vregions vs Page Tables

e Can you make modifications to struct vpage_info?

e What happens if you make changes to
vregions/vpage_info? Is it automatically reflected on the

page table?

10



Time to practice!
How well do you know vspace.c?




Vspace Functions

For each question, there is a corresponding function in vspace.c

Given a virtual address, how do you find which vregion it belongs to?
o va2vregion

Given a virtual address, how do you find its metadata (vpage_info)?
o va2vpage

How do you add a new virtual to physical mapping?
o vregionaddmap

How do you update the page table to reflect changes in vregion/vpage_info?
o vspaceupdate

How do you flush the TLB?

o vspaceinstall

12



Vspace Events

e When would you want to flush the TLB?
o When there's a change in page permission

e Do you need to flush the TLB after a new mapping is added?
o \[o}.

13



And that's the vspace side of
things! But you'll need to deal
with some physical frame
bookkeeping too...



Physical Memory Management

"I KNOW JUST HOW YOU FEEL."

OUT OF

MEMORY
ERROR! |




Motivation

For COW fork you'll need to
track refcounts on physical
frames.

Therefore: you'll need to
interact with physical
memory bookkeeping
structures.

Let’s talk about that!

Direct translation of fJ[17H (jia yo
An exclamation expressing enco




Physical Memory Management

e Our QEMU instance emulates 16MB of physical memory

e |tis entirely mapped into the kernel virtual address range starting at
KERNBASE

e Can easily find the physical address backing a kernel virtual
address: subtract va by KERNBASE

o can the same thing be done on user virtual address?

e V2P(a) (((uinté4_t)(a))

Hdafinae PO2V(IaY (((void «)Y(a) ; EDNRACE)
#define P2V(a) (((void *)(a)) + KERNBASE)

Provided code has macros for doing physical/virtual conversions.

17



Physical Memory Allocation

e kalloc allocates a physical frame, it returns the kernel page mapped to the
physical frame for ease of access

e multiple system calls/kernel functions may call kalloc concurrently, what
does kalloc do to keep these accesses safe?

e how does kalloc find a free frame?
o by looking through metadata for frames (core map)

struct core_map_entry {

int available;
short user; // 0 if kernel allocated memory, otherwise is user
ern

vinté4_t va; // if it is used by kernel only, this field is 0O

E
Physical frame metadata

18



core_map_entry

e Access should be protected by the kmem.lock

e Can add to the struct to track additional information (refcounts)
o Why do we care about refcount?
o When will the refcount be greater than 1?
struct core_map_entry {

int available;
short user; // 0 if kernel allocated memory, otherwise is use

vinté4a_t va; // if it is used by kernel only, this field is 0

3

physical frame metadata

19



kalloc and kfree Tips

You might want to update the physical frame ref counts in these functions...

e When we update ref counts, do we need to ensure synchronization?

When decrementing ref counts, make sure to always check if current ref count >
0!

e kfree is called on each frame during boot process. You can end up with -1
refcounts if you aren’t careful!



And that’s the -
physical memory &
side of things! You .

are more than ready
to tackle Lab 3 )

L 2 _:*

. <. » Y. ’ ' ‘3
) - g ’..: '.i:;
: | = quickmemeico




Lab 3 FAQ



Error Codes FAQ

e Does the user bit (b2) configuration matter with regards to stack growth and
COW cases?
o No! Can happen in either kernel or user mode for both cases!
e When/where should | check error codes?
o Intrap()!



COW FAQ

e Do we need synchronization while modifying the vspace in
page fault in COW fork?

m Not needed - current process has exclusive access to its own
vspace (no multithreading)

m However, the ref count on the physical page could be concurrently
modified

e What can happen if a copy-on-write fork is not synchronized?
e What happens to a page that is already read-only before COW
fork?

24



Helper Macros and Functions

P2V: translate physical addr to virtual addr
V2P: translate virtual address to physical address
PGNUM: translate physical address to page number

va2vpage_info: translate virtual address to vpi_info

25



Any questions?



Lab 3 Open OH



