
Lab 3 More

Memory Management

1



Reminder

● Lab 3 Code due Monday 5/13/24
● Pset 5 Due Tomorrow! 5/10/24
● Pset 6 Out Tomorrow! 5/10/24

○ Due 5/17/24

2



Today’s Agenda

● More detail on vspace and vspace functions
● xk physical memory management
● Some discussion questions on lab 3
● Q&A time/Open OH

3



vspace Structs



Let’s talk virtual

Continuing from last week: you’ll be finagling and wrangling 
virtual memory in Lab 3. So let’s understand what you’re 
wrangling.



vpage_info

A struct vpage_info describes characteristics of the virtual page that we are 

pointing to, e.g used, physical page number, present, writable



vpi_page 

● A vpi_page is a container of vpage_info's
○ (vpi_page = “virtual page info page”).

● A vregion is made up of a linked list of vpi_pages.
○ (vregion can grow dynamically as needed)

● It stores an array of infos plus enough space for a pointer to a "next" 

vpi_page struct.



vspace Visual Diagram

8

vpi_page



vregions vs Page Tables

Ok so the vspace is made up of regions and the page table…

● What's the difference between xk’s vregions and the page 
table?

9



vregions vs Page Tables

● Can you make modifications to struct vpage_info?
● What happens if you make changes to 

vregions/vpage_info? Is it automatically reflected on the 
page table?

10



Time to practice! 
How well do you know vspace.c?



Vspace Functions

For each question, there is a corresponding function in vspace.c

● Given a virtual address, how do you find which vregion it belongs to?
○ va2vregion

● Given a virtual address, how do you find its metadata (vpage_info)?
○ va2vpage

● How do you add a new virtual to physical mapping?
○ vregionaddmap

● How do you update the page table to reflect changes in vregion/vpage_info?
○ vspaceupdate

● How do you flush the TLB?
○ vspaceinstall

12



Vspace Events

● When would you want to flush the TLB? 
○ When there’s a change in page permission

● Do you need to flush the TLB after a new mapping is added?
○ No! 

13



And that’s the vspace side of 
things! But you’ll need to deal 
with some physical frame 
bookkeeping too…



Physical Memory Management



Motivation

● For COW fork you’ll need to 
track refcounts on physical 
frames.

● Therefore: you’ll need to 
interact with physical 
memory bookkeeping 
structures.

● Let’s talk about that!



Physical Memory Management

● Our QEMU instance emulates 16MB of physical memory
● It is entirely mapped into the kernel virtual address range starting at 

KERNBASE
● Can easily find the physical address backing a kernel virtual 

address: subtract va by KERNBASE
○ can the same thing be done on user virtual address?

17

Provided code has macros for doing physical/virtual conversions.



Physical Memory Allocation

● kalloc allocates a physical frame, it returns the kernel page mapped to the 
physical frame for ease of access

● multiple system calls/kernel functions may call kalloc concurrently, what 
does kalloc do to keep these accesses safe?

● how does kalloc find a free frame? 
○ by looking through metadata for frames (core_map)

18Physical frame metadata



core_map_entry

● Access should be protected by the kmem.lock
● Can add to the struct to track additional information (refcounts)

○ Why do we care about refcount?
○ When will the refcount be greater than 1?

19

physical frame metadata



kalloc and kfree Tips

You might want to update the physical frame ref counts in these functions…

● When we update ref counts, do we need to ensure synchronization?

When decrementing ref counts, make sure to always check if current ref count > 
0!

● kfree is called on each frame during boot process. You can end up with -1 
refcounts if you aren’t careful!



And that’s the 
physical memory 
side of things! You 
are more than ready 
to tackle Lab 3 :)



Lab 3 FAQ



Error Codes FAQ

● Does the user bit (b2) configuration matter with regards to stack growth and 
COW cases?
○ No! Can happen in either kernel or user mode for both cases!

● When/where should I check error codes?
○ In trap()!



COW FAQ

● Do we need synchronization while modifying the vspace in 
page fault in COW fork?

■ Not needed -- current process has exclusive access to its own 
vspace (no multithreading)

■ However, the ref count on the physical page could be concurrently 
modified

● What can happen if a copy-on-write fork is not synchronized?
● What happens to a page that is already read-only before COW 

fork?
24



Helper Macros and Functions

P2V: translate physical addr to virtual addr

V2P: translate virtual address to physical address

PGNUM: translate physical address to page number

va2vpage_info: translate virtual address to vpi_info

25



Any questions?

26



Lab 3 Open OH


