
Lab 3 Intro

Memory Management

1

Administrivia

● Lab 2 Part 2 due yesterday 5/01
● Lab 3 is out!

○ Design doc due on Monday (5/06)
○ Lab 3 due 5/13

● Pset 4 due tomorrow 5/03
● Pset 5 out tomorrow 5/03

2

Today’s Agenda

● xk virtual memory
● Go over the parts of Lab 3:

○ Part 1: sbrk
○ Part 2: The User Shell
○ Part 3: Stack Growth
○ Part 4: COW Fork

● Next week - deeper dive into vspace structs and functions

3

Memory in xk

Motivation

In Lab 3 you are required to implement multiple features which
deal with virtual memory.

Therefore, understanding the existing virtual memory
implementation in xk is essential! (Unless you want to rebuild it all from scratch…
please don’t)

So: How does virtual
memory do in xk?

Refresher: Xk’s Virtual Memory Layout

This diagram from memory.md
shows the layout of virtual
addresses for a process in xk.
(The addresses shown on left
are virtual).

Key Takeaway: “virtual
memory” is just a mapping
from virtual addresses to
physical addresses.

^From “memory.md” in the repo.

https://gitlab.cs.washington.edu/xk-public/24sp/-/blob/main/docs/xk/memory.md?ref_type=heads

x86 Virtual Memory Datastructures

…but where do those mappings come from?

● (As you learned in lecture) paging in x86-64 is handled directly by the
hardware using a page table data structure which lives in memory.

○ The pml4e_t* pgtbl; field of struct vspace
● The %CR3 register tells the CPU the physical address of the page table.

○ In xk lcr3() updates %CR3

Thus a “virtual address space” is defined by a single page table, and “switching
virtual address spaces” means to point %CR3 to a new page table.

So… simple right?

To implement lab 3 you just need
to modify the appropriate page
tables, switching between them at
the appropriate times.

… almost…

xk’s Platform-Agnostic Virtual Memory

xk implements virtual memory data structures which:

● Are platform agnostic.
● Present a simpler interface.
● Can be translated to x86-specific page tables.

Key point: you should manipulate these (rather than the page table directly).

Note that xk provides functions in vspace.c for manipulating these.

xk’s Platform-Agnostic Virtual Memory

You’ve already seen some of these platform-agnostic data structures, but the
main ones are:

● Struct vspace
● Struct vregion
● Struct vpi_page
● Struct vpage_info

Throughout this lab you will become masters of wielding these structs.

Virtual Memory Summary

And that’s that! Just as a quick recap:

● Actual virtual memory is implemented in hardware
● The hardware uses platform-specific data structures like the page table
● xk uses additional platform-agnostic virtual memory data structures
● You should primarily interact with the platform-agnostic data structures.

Now let’s talk about the lab!

Part 1: sbrk
(“set program break”)
Get more heap space

14

Refresher: User Level Heap Management

● Recall that User-level programs use malloc and free to manage heap
memory
○ Track list of the free blocks in memory
○ Malloc: Return a free block of memory somewhere in the heap
○ Free: Free a block of memory somewhere on the heap, so it can be

reused
○ We’ve given you malloc/free in user/umalloc.c

15

I’ve run out of heap space…

But modifying the page table is a
privileged operation… how does malloc
get more free memory?

16

I’ve run out of heap space…

But modifying the page table is a
privileged operation… how does malloc get
more free memory?

● Malloc sends a request to OS to
expand the heap region

● OS needs to see if the request can be
granted (when might it not?), if so,
allocate physical memory and map
the extended heap region to it

What is the name of the system call that
gets more heap space?

17

Enter sbrk(n)

What does sbrk() do?

● Increase the size of the heap by n bytes, updating the “program break”
○ Program break = max space allocated to the heap segment
○ N can be negative in a real system, but that is not required for xk

● Returns -1 if it can’t allocate enough space
● Otherwise, return the previous heap limit (the old top of the heap)

You need to implement this syscall for Lab 3 Part 1

18

19

before after

sbrk details

● sbrk is called with byte granularity
○ You can expand by a couple bytes: sbrk(10)
○ You can expand by multiple pages: sbrk(8K)

● Extended heap range needs to be updated in the heap vregion
○ You may need to allocate physical memory for newly extended range of

virtual address space
○ Where is the heap vregion? (Hint: take a look at memory.md)

● Heap can grow as long as it doesn't collide with any other vregion.
20

sbrk’s Byte Granularity

Wait a second… Physical memory can only be allocated in pages, and sbrk()
operates on byte granularity!

If a new process calls sbrk(1) followed by a sbrk(100), how many pages should
we allocate?

21

What to do for sbrk

What is provided for you:
● vspace.c contains a function which adds new virtual address mappings to a

vregion (and allocates physical frames as necessary).

What you need to do in sbrk():
● Calculate previous top of heap
● Add/update mappings in the page table by calling provided functions
● Return previous top of heap (or -1 on error)

If you find yourself writing > dozen lines of code, you’re probably reinventing the wheel…
22

Part 2: The Shell
finally some interactions

23

The Shell

How does the shell work?

● The initial process (user/init.c) will fork to create a shell
● Shell uses malloc and sbrk!
● The shell will take user input and run commands, spawning other programs

○ Just like bash, cmd, or whatever else

● You can now use the shell by typing different commands!
○ e.g. ls | wc will pipe the output of ls into the input of wc
○ Since fd 0/1/2 are always in/out/err, we can change a process file table entry to be a pipe

(when forking, before exec)

24

How to Test the Shell

Remember when we said to make your lab 1 and lab 2 system calls as comprehensive as
possible? Well, the shell will put them to the test!

What you need to do:

● Boot the shell when you “make qemu” (the spec outlines how to do this)
● Test your shell with the following commands:

○ echo "hello world" | wc
○ cat small.txt | wc
○ ls

● If there are bugs, fix them now!
● Often the pipe command reveals issues that were not covered by Lab 2 Part 2 tests

Part 3: Let it Grow
m o r e s t a c k

26

Grow Stack on Demand

● The initial version of exec() is pretty simple
○ one page of stack from SZ_2G down

● One page of stack probably isn’t enough for larger programs.
● But giving more pages is wasteful if the program doesn’t need it.
● In lab 3, you need to dynamically add more pages of stack as needed.

How do we tell when more stack needs to be added?

What happens when you access beyond the current stack page?

27

Grow Stack on Demand

● Once we’ve written off the end of what’s currently allocated
○ PAGE FAULT! (Hint: in trap.c, trap 14 is page fault!)
○ Add more pages and resume user-level execution
○ On page fault, you should grow the stack up to the faulting page (usually one

page at a time)

● For simplicity, xk has a stack limit of 10 pages
○ If page fault and address > stack_base - 10 pages: grow stack!
○ Else: “normal” page fault (exit)

28

Stack Growth vs sbrk

Stack growth and sbrk call similar vspace functions to grow the respective
vregions.

However, the growth trigger for stack growth vs heap growth is different:

● Page fault → Stack growth
● System call → Heap growth

What to do for Lab 3

What is provided:

● Basic trap handler is provided for you as trap() in trap.c
● Once again, there are provided vspace functions

○ Similar to what you use in sbrk()!

What you need to do:

● Alter trap() function to handle stack growth
○ Extract information about faulting address using error codes

30

Part 4: COW Fork
(no harm was done to these cows)

31

Copy on Write Fork

Remember when you called vspacecopy to copy the vspace of the parent to
the child?

Well, your lab2 fork implementation is inefficient because of how this function
currently works :(

vspacecopy at a high-level:

● Go through pages in the parent
● if a page is mapped to a frame, allocate a new frame

○ Copy the content to the new frame
○ Call vspaceupdate to update the child's table with the new mappings.

32

33

Page A

Page B

Page C

Page D

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Physical
VSpace A

Read/Write Virtual
Page

Read only Virtual
Page

Allocated Physical
Frame

Unallocated
Memory (physical
or virtual)

34

Page A

Page B

Page C

Page D

Page A

Page B

Page C

Page D

Frame 1

Frame 2

Frame 3
(Copy of Frame 1)

Frame 4
(Copy of Frame 2)

Frame 5

Frame 6

Frame 7
(Copy of Frame 5)

Frame 8
(Copy of Frame 9)

Frame 9

Physical
VSpace BVSpace A

Read/Write Virtual Page Read only Virtual Page Allocated Physical Frame
Unallocated Memory
(physical or virtual)

We copied all the pages :(

As a consequence:

● Child and parent duplicate the same unchanging pages of code and
static data

● If we fork and exec, we waste time copying all pages before
immediately discarding the vspace

Your job in Lab 3 Part 4 is to fix this!

35

Optimizing Fork Memory

How would we optimize this to reduce the memory footprint
of processes? What can we do better?
● Don’t actually copy pages
● “Copy” the page table and set everything to read-only

○ Both processes can reference the same data
● Only when we need to write to a page should we duplicate it

○ Most of the time, we won’t write to a page again, so no
copying needs to be done

37

Page A

Page B

Page C

Page D

Page A

Page B

Page C

Page D

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Physical
VSpace BVSpace A

Read/Write Virtual Page Read only Virtual Page Allocated Physical Frame
Unallocated Memory
(physical or virtual)

38

Page A

Page B

Page C

Page D

Page A*

Page B

Page C

Page D

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Physical
VSpace BVSpace A

Page A in Vspace B could be safely set to writable (if there are no other vspace pointers pointing at Frame 7).

Read/Write Virtual Page Read only Virtual Page Allocated Physical Frame
Unallocated Memory
(physical or virtual)

COW Food For Thought

1. How do you distinguish a copy-on-write read-only page from a normal
read-only page?
a. Hint: each page has a vpage_info struct that can be retrieved w/ va2vpage_info

2. How to track the lifetime of a physical frame now that it can be shared by
many processes?
a. Hint: there is a per frame metadata called core_map_entry

3. What happens (specifically) when a process tries to write to a COW page?
a. Hint: a page fault? what error code?

COW Food For Thought cont.

1. What happens if both parent and child writes to the same cow page?
a. Hint: is there any race condition? how do you synchronize this?

2. What happens when a child with COW pages calls fork()?
a. Hint: The parent, child, grandchild, etc. will all reference the same physical pages,

so what do you need to update?

40

What to do for Lab 3

What is provided:

● Trap handler
● Relevant structs/functions in vspace.c and vspace.h

What you need to do:

● Alter trap() function to handle COW cases
● Create a vspacecowcopy() function that shares physical memory
● Update fork() implementation if necessary
● Update relevant structs to track extra information related to COW pages

Ok cool! I’m starting to
understand Lab 3…

But wait! How do I
distinguish stack growth vs
COW page faults?

- You, a trap-handling expert in the
making

Handling Page Faults in x86-64

● The %CR2 register holds the faulting virtual address
○ How do you read or load a control register? (look in trap.c in the default case)

● tf->err holds the exception error code
○ You can use this to determine the type of fault!

43

Error Codes

● Last 3 bits of tf->err
○ B2 is set if fault occurred in user mode
○ B1 is set if fault occurred on a write
○ B0 is set if the faulting page is mapped to a physical frame

■ if we page fault on a page that's mapped, then it's caused by permission issues

44

Error Codes

● Last 3 bits of tf->err
○ B2 is set if fault occurred in user mode
○ B1 is set if fault occurred on a write
○ B0 is set if the faulting page is mapped to a physical frame

■ if we page fault on a page that's mapped, then it's caused by permission issues

What will the error code be if the page fault was from touching the stack region
of memory?

45

Error Codes

● Last 3 bits of tf->err
○ B2 is set if fault occurred in user mode
○ B1 is set if fault occurred on a write
○ B0 is set if the faulting page is mapped to a physical frame

■ if we page fault on a page that's mapped, then it's caused by permission issues

What will the error code be if the page fault was from touching the stack region
of memory?

What about writing to a copy-on-write page?
46

