
Lab 2

Part 2

1

Admin

● Lab 2 has 2 parts with separate design docs and due dates
○ Part 1 Code due 4/22 (grace period and late days)
○ Part 2 Design due 4/24 (no grace period or late days)
○ Part 2 Code due 5/01 (grace period and late days)

● Pset 3 due tomorrow 4/19

2

Monitors

3

What the heck is a monitor?

● A monitor is made up of a lock and at least one condition variable

Why do we use monitors?

4

What the heck is a monitor?

● A monitor is made up of a lock and at least one condition variable

Why do we use monitors?

● Similar to locks but…
○ Allow processes to wait for certain conditions to become true while “holding lock” (waiter

atomically releases the lock and reacquires the lock on wakeup).

5

Monitors in xk

● Lock
○ xk condition variable API only supports spinlock (an impl. choice)

● Condition
○ the shared data that threads are synchronizing on

○ E.g. for wait/exit this would be child's state

● Condition Variable
○ the waiter list is tracked by the process table

○ proc in SLEEPING state with the same chan are part of the same CV

○ chan is a pointer, can be anything (think of it as a cv identifier)
6

“Condition variable? I
saw no mention of
those in the provided
code.” ~ You, a free
thinker.

7

No Condition Variables in xk

The starter code does not provide the object-oriented std::condition_variable API
you can find in C++: LINK

Instead it provides the sleep and wakeup helper functions (which together can
implement the monitor pattern)

● sleep ~= wait
● wakeup ~= broadcast

8

https://en.cppreference.com/w/cpp/thread/condition_variable

Sleep

● sleep(void* chan, struct spinlock* lk)
○ atomically release your current lock and grabs the process table (ptable) lock

■ if your current lock is the ptable lock do nothing
■ why might your current lock be the ptable lock?

○ sets myproc()->state to SLEEPING
○ sets myproc()->chan to whatever channel we are waiting on
○ yields so that scheduler can run another process

9

Wakeup

10

● wakeup(void* chan)
○ acquires the process table lock
○ looks for all SLEEPING processes with the given channel (chan)

■ sets each proc->state to RUNNABLE (ready)
■ proc->chan is also cleared to NULL

Monitors in xk

● You will use monitors to implement wait(), exit(), and pipe() for lab2!

wait(), exit()

● Coordinating children and parent processes

pipe()

● Coordinating reader and writer processes

11

Lab 2 - Pipe

12

What is a Pipe?

A pipe is essentially a queue of bytes with two ends:

● One end designated for input, the other for output

When you type ‘ls | wc’ into the shell, you are using a pipe!!!

● ‘ls’ lists the directory contents
● ‘wc’ counts the number of lines output from the ls command
● The pipe joins the output from ‘ls’ to the input of ‘wc’

13

● Creates a pipe (kernel buffer) that can be read from/written to.

● From the user perspective: returns two new file descriptors
○ fds[0] = “read end”, O_RDONLY
○ fds[1] = “write end”, O_WRONLY

● Pipes allow processes to communicate with each other
○ Parent opens a pipe, forks a child (now they both have access to the pipe ends)
○ Typically each process only leaves one end open (closes the read end or the

write end)

pipe(fds)

14

An Example to Illustrate Pipes

Now let’s go through a demonstration of what happens as a
sample user uses the pipe API (in the context of
multiprocessing)!

15

Pipe usage

● Process 1 starts with no open files

16

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Pipe usage

● Process 1 calls pipe()

17

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

read
end

write
end

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

read
end

write
end

File Struct
(Read only)

File Struct
(Write only)

PipeWhat will the newly allocated
pipe fds point to?

18

Pipe usage

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

19

read
end

Process 2’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

● Process 1 calls fork(), fd table is duplicated

write
end

read
end

write
end

○ Note: fork() is called
by user and should
not be called within
the actual pipe() call

Pipe usage

● Process 1 close(1), process 2 close(0)
● The process with the write end open is a writer, and the one with the

read end open is a reader

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3

st
ru

ct
 p

ro
c

PROC_MAX_FILE

Abstraction of a pipe

20

write
end

read
end

pipe FAQs

● When should pipe be allocated?
○ dynamically! when pipe() is called!

● How does xk do dynamic memory allocation?
○ hint: kstack is also dynamically allocated
○ `kalloc` allocates a page (4096 bytes) of memory from the kernel heap

■ wait, but how do I put a pipe onto the page?

21

struct pipe* p = kalloc();

p->buffer = ???

should be right past the struct,
and what would that be?

22

a page of memory
(4096 bytes)

struct pipe {
metadata…
char* buffer;

}

actual buffer

pipe FAQs

● When can you free the pipe and its buffer?
○ remember there may be multiple references to read end and write end

● Can we always write to or read from the buffer? (Hint: bounded buffer sync)
○ What if there's no room to write, or no data to read?
○ What happens if all read/write ends are closed?

● How will pipes integrate with the file syscalls?
○ Need a way to determine if a struct file is an inode or a pipe

23

Interaction with File API

Pipes are accessed through file descriptors.

This means you need to think through how the lab 1 syscalls will
work when called on pipe file descriptors:

● read
● write
● stat

● close
● dup

24

What should pipe contain?

● What metadata/information do you need for pipe?

25

What should pipe contain?

● What metadata/information do you need for pipe?
○ Read offset
○ Write offset
○ # of bytes available in the buffer
○ Whether the read end is still open
○ Whether the write end is still open
○ Lock and condition variables
○ A way to track the active writer [why?]

● Similar to the bounded buffer problem

26

And that’s pipe!

… But wait! There’s
more! (that you have
to do in lab 2 part 2)

27

But wait! …. There’s more! (in lab 2 part 2)

In lab 2 part 2 you are also implementing exec

28

Lab 2 - exec

29

Motivation

Why do we have exec?

● To let user code execute user programs!
○ E.g. Shell commands like ‘ls’ and ‘cat’ commands are

exec’ed by the ‘sh’ program.

30

exec(program, args)

● Fully replaces the current program; it does not create a new
process

● How do we replace the current program?
○ need to set up a new virtual address space and new registers

states
○ and then switch to using the new VAS and register states
○ file descriptors and pid remain the same

31

exec(path, argv) arguments validation

32

string0 0string5string4string3string2string1

must be validated for an 8 byte
pointer before we can access
argv[0] and validate string0

argv / &argv[0]

exec(path, argv) arguments validation

33

must be validated for an 8 byte
pointer before we can access
argv[1] and validate string1

&argv[1]

string0 0string5string4string3string2string1

exec(path, argv) arguments validation

34

must be validated for an 8 byte
pointer before we can access
argv[2] and validate string2

&argv[2] repeat this process until
● a NULL entry is reached
● a validation error

string0 0string5string4string3string2string1

exec(program, args)

● Setting up a new virtual address space (pseudocode)
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to allocate stack vregion

■ you still need to populate user stack with arguments
■ vspacewritetova to write data into the stack of the new VAS

○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right!
○ To swap: Assign the new vspace to current vspace

35

How are the args set
up in exec?

36

Another look at main()

exec sets up the function arguments for main!

int main(int argc, char** argv)

● argc: The number of elements in argv
● argv: An array of strings representing program arguments

- First is always the name of the program
- Argv[argc] = 0

37

Setting up the Stack

38

Quick Review: X86_64 Calling Conventions

From 351:

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

39

Quick Review: X86_64 Calling Conventions

From 351:

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the

register contains a pointer to the array’s beginning

40

Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]
argv[argc] = NULL

Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Why? Alignment
● Why NULL pointer?

Convention

SZ_2G

41

\0… (padding)

Let’s Practice!

42

Practice Exercise 1

%RDI

%RSI

%RSP

// High addresses Now it’s your turn!

Draw stack layout
and determine
register values for
exec() called with:

“cat cat.txt”

43
Stack grows down

%RDI

%RSI

%RSP

// High addresses

// Stack grows
// down

44

Practice Exercise 1: “cat cat.txt” Solution
stackptr

%RDI

%RSI

%RSP

“cat.txt”
// High addresses

// Stack grows
// down

45

Practice Exercise 1: “cat cat.txt” Solution

stackptr

%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

46

Practice Exercise 1: “cat cat.txt” Solution

stackptr

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

47

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

\0\0\0\0

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

48

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

49

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

50

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

51

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

52

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

● RSI holds argv: the beginning
of the argv array

Return PC

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

53

Practice Exercise 1: “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

● RSI holds argv: the beginning
of the argv array

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

Return PC

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

stackptr%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

54

Practice Exercise 1: “cat cat.txt” Solution

● RDI holds argc, which is 2

● RSI holds argv: the beginning
of the argv array

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

● RSP is properly set to the
bottom of the stack.

Practice Exercise 2

%RDI

%RSI

%RSP

// High addresses Now it’s your turn!

Draw stack layout
and determine
register values for
exec() called with:

“kill -9 500”

55
Stack grows down

3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

Return PC
argv[0]
argv[1]
argv[2]

argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down

56

Practice Exercise 2: “kill -9 500” Solution

\0\0\0\0

Questions?

57

