
CSE 451: Section 1

C, GDB, Lab 1 intro
3/28/24

Overview

1) Review of C
2) Tools for debugging
3) Office hours, discussion board
4) Lab 1 intro

2

Review of C

3

Pointers & Addresses

● &: Gets the address of where something is stored in (virtual) memory
○ a 64 bit (8 byte) number
○ you can do arbitrary math to a pointer value (might end up with an invalid address……)

■ ptr++ Increments address by the size of the pointed to type
■ no pointer arithmetic on a void pointer!

● *: Dereferencing, “give me whatever is stored in memory at this address”.
○ dereferencing invalid addresses (nullptr, random address) causes a segfault!

4

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

← Pass in a pointer
ptr = address of an int
*ptr = value stored at the address ptr

← Gets the address at which ‘x’ resides in memory

5

Pointers & Addresses

6

Find the bug 🐛

7

Find the bug 🐛

8

Find the bug 🐛

9

Tools For Debugging

10

Old Friend: Printf

Prints are very useful for simple debugging:
● How far have we reached in a function?
● How many times did we meet a condition?
● Function invocations & its parameters

However, sometimes prints are not enough:
● printfs may affect bugs in your code in unexpected ways
● printf grabs a console lock that may make the bug difficult to reproduce
● printf uses a buffer internally, so prints might be interleaved
● can't print in assembly

11

New Friend:

GDB
This is a systems class and you’ll be doing a LOT of debugging

Also lots of pointers.
Really, the pointers are the main reason for the debugging

12

GDB commands to know: a non-exhaustive list

● run: start execution of the given executable

● n: run the next line of code. If it’s a function, execute it entirely.
○ ni: Same behavior, but goes one assembly instruction at a time instead.

● s: run the next line of code. If it’s a function, step into it
○ si: Same as “s”, but goes one assembly instruction at a time instead.

● c: run the rest of the program until it hits a breakpoint or exits

13

GDB commands to know: a non-exhaustive list

● b _____: set a breakpoint for the given function or line (e.g. “b
file.c:foo”)

● bt: get the stack trace till the current point
● up/down: go up/down function stack frames in the backtrace
● (r)watch _____: set a breakpoint for the given thing being accessed
● p _____: print the value of the given thing

○ understands C-style variable syntax, e.g.: p *((struct my_struct*) ptr) interprets the
memory pointed to by ptr as a `struct my_struct`.

● x _____: examine the memory at an address, many flags

14

GDB Example

15

GDB Cheatsheet

See this GDB cheatsheet for a good overview of what’s possible.

16

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Logistics

17

Regarding office hours

● There are a lot of strange ways you can introduce bugs in the kernel

● Please do preliminary debugging as far as you can before office
hours, so we can give useful advice

○ should know what test case in what scenario is failing
○ if a function returns a different value than expected, figure out what line caused

the issue (is a strcmp failing? is a NULL ptr check failing?)

● We may ask you to find out some information about your error
before getting back to you

18

Discussion Board

If you’ve tried debugging and have come up against a wall that would take too
long for office hours, consider posting on the discussion board.

Include DETAILS

● What is the problem (What did you expect to see? What actually
happened?)

● Which methods does it manifest in
● What does work
● What debugging have you tried, & what did you find

19

Reminders

● Find a lab partner and fill out the form by today!
● Read through lab 1 handout and other relevant docs

20

https://docs.google.com/forms/d/e/1FAIpQLScKSdoElh5eu2bqYFZeTwxgT2dJ7nX6J0ldNCXqHDJntlqkJw/viewform

Lab 1 Intro

21

What is xk?

- xk stands for “experimental kernel”
- the teaching OS you will be extending throughout the quarter
- needs to understand different parts of the codebase for each lab

- we will run it on QEMU (hw emulator)
- a simpler version of the early linux kernel

22

Summary of Lab 1

● learn to run xk and debug using GDB
● read existing code and understand existing design decisions
● implement file syscalls

○ parsing and validating syscall arguments
■ see implemented syscalls for reference (sysfile.c)
■ argptr, argstr, argint, what do these functions do?

○ create open file (I/O) abstraction
■ user: file descriptor
■ kernel: file_info, file_* functions

○ perform the requested file operations
■ use the existing xk filesys (kernel/fs.c)

23

List of Syscalls To Support

open(filename)
returns a per-process handle (file descriptor) to be used in subsequent calls

dup(fd)
allocates a new file descriptor for the open file mapped by the fd

close(fd)
closes/deallocates a file descriptor

read/write(fd, buffer, bytes_requested)
reads or writes bytes into/out of buffer, advances position in file

fstat(fd,stat)
populates stat struct with information of the open file mapped by the fd

24

File Descriptors - User View

● implemented as an integer

● used for all I/Os
○ network sockets
○ pipes for interprocess communication
○ applications can use read/write regardless of what it is reading/writing to

● per-process construct
○ the same fd can map to different open files in different processes

● Kernel should not trust file descriptors passed by user
○ what could go wrong?

25

File Descriptors - Kernel View

● kernel allocates a file descriptor upon an open or dup
○ must be give out the smallest available fd
○ need to manage fd allocation

■ where might you store fd => open file mappings?
○ there's a max number (NOFILE) of open files for each process

■ what should happen if a process try to open more files?

● kernel deallocates file descriptors upon close
○ close(1) means that fd 1 is now available to be recycled and given out via open

26

The Open File Abstraction: File Info Struct

Needed to support richer semantics than what the xk
filesys currently provides:

● the same file can be opened in different modes
● implicit file position advancement
● multiple fds can map to the same open file
● allocation & deallocation of the open file

File Info Struct

27

The Open File Abstraction: File Info Struct

What info do we need to support these semantics?

● reference count of the struct
○ how many fds points to this open file (why is this important?)

● a pointer to the inode of the file
● current offset of the open file
● access mode (check out inc/fcntl.h)
● anything else?

File Info Struct

28

Allocation of File Structs

After defining the file struct, you can pre-allocate NFILE amount of file info
struct as a static array, and then actually allocate the struct when needed.

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2

File
Struct
Index

NFILE - 2

File
Struct
Index

NFILE - 1

= In use = Available
29

File_* Functions

Should implement a file_* for each of the file syscalls

File_* functions should take care of changes to the file info struct
advancing the offset
manage open file (file info struct) reference count
allocate & deallocate struct when needed
checking whether an operation is allowed given the access mode

30

The xk Filesys: Inode Layer

iopen
looks up a file using a given path, returns inode for the file
increments the inode’s reference count

irelease
decrements this inode’s reference count

concurrent_readi
read data using this inode

concurrent_writei
write data using this inode

File layer provides “policy” for accessing files, inode layer provides “mechanism” for reading/writing

Note: For Lab 1, don't worry about what inode is, just need to invoke the corresponding func.

31

Lab 1: Start Early!

- It takes time to set up and navigate the code base
- Compile Time Issues
- Getting comfortable with gdb

32

Git Resources

- Git manual: https://git-scm.com/docs/user-manual
- Git tutorial: https://learngitbranching.js.org/?locale=en_US

33

https://git-scm.com/docs/user-manual
https://learngitbranching.js.org/?locale=en_US

