CSE 451; Section 1

C, GDB, Lab 1intro
3/28/24

Overview

1) Review of C

2) Tools for debugging

3) Office hours, discussion board
4) Lab1intro

Review of C

Pointers & Addresses

e &: Gets the address of where something is stored in (virtual) memory
o a64 bit (8 byte) number
o you can do arbitrary math to a pointer value (might end up with an invalid address......)
m ptr++ Increments address by the size of the pointed to type
m no pointer arithmetic on a void pointer!

e *: Dereferencing, “give me whatever is stored in memory at this address”.
o dereferencing invalid addresses (nullptr, random address) causes a segfault!

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

void increment(intx ptr) { « Pass in a pointer
xptr = xptr + 1; ptr = address of an int
} *ptr = value stored at the address ptr

void example() {
int x = 3¢
increment (&x); : ‘ «— Gets the address at which ‘x’ resides in memory

}

Pointers & Addresses

void class_string(charxk strptr) {

xstrptr = "class";
}
void example() {
charkx str = "hello"; // what would strlen(str)return?

charx str2 = str;
class_string(&str2); // what would printf(str2) output?
}

Find the bug %,

struct elem {
int value;
struct elem *xnext;

F:

int example(struct elemk e) {
if (e !'= NULL) {
return e->next—>value;

}

return -1;

}

Find the bug %,

struct elem {
int value;
struct elem *xnext;

}:

void increment(struct elem xe) {
if (e != NULL) {
e—>value += 1;

}

void example() {
struct elem xe;
increment(e);

I

Find the bug %,

struct elem {
int value;
struct elem sknext;

5

struct elemk alloc_elem() {
struct elem e;
return &e;

}

void example() {
struct elemk e = alloc_elem();

{

if (e != NULL)
e—>value = 0;

}

L

Tools For Debugging

Old Friend: Printf

Prints are very useful for simple debugging:

How far have we reached in a function?
How many times did we meet a condition?
Function invocations & its parameters

However, sometimes prints are not enough:

printfs may affect bugs in your code in unexpected ways

printf grabs a console lock that may make the bug difficult to reproduce
printf uses a buffer internally, so prints might be interleaved

can't print in assembly

11

New Friend:

This is a systems class and you'll be doing a LOT of debugging
Also lots of pointers.
Really, the pointers are the main reason for the debugging

12

GDB commands to know: a non-exhaustive list

e run: start execution of the given executable

e n:run the next line of code. If it's a function, execute it entirely.
o ni: Same behavior, but goes one assembly instruction at a time instead.

e s:runthe next line of code. If it's a function, stepinto it
o si:Same as “s”, but goes one assembly instruction at a time instead.

e C: run the rest of the program until it hits a breakpoint or exits

13

GDB commands to know: a non-exhaustive list

: set a breakpoint for the given function or line (e.g. “b

file.c:foo”)
e bt: get the stack trace till the current point
e up/down: go up/down function stack frames in the backtrace

e (rwatch : set a breakpoint for the given thing being accessed

e p_____ : print the value of the given thing

o understands C-style variable syntax, e.g.: p *((struct my_struct®) ptr) interprets the
memory pointed to by ptras a " struct my_struct".

o X : examine the memory at an address, many flags

14

Reading symbols from a.out...done.

[(gdb) b main

Breakpoint 1 at 0x40060d: file example.c, line 13.
[(gdb) b 5

Breakpoint 2 at 0x4005e9: file example.c, line 5.
, [(gdb) run

#include <stdio.h> Starting program: /homes/iws/jlli/a.out

; ST ; SR Breakpoint 1, main () at example.c:13
voi::':::a:";‘(,x: ::ptr.) b 13 printf("starting value for a: %d, b: %d, c: %d\n", a, b, c);
R ' [(gdb) print a
l exit(1); $1 =10
} [(gdb) print b
*ptr += 1; $2 =0
} [(gdb) print c
$3 = 32767
[(gdb) n
1“;:’:','(_: {c' starting value for a: @, b: @, c: 32767
L 14 increment(a);
, e _ _ . [(gdb) c
printf(“starting value for a: %d, b: %d, c: %d\n", a, b Continuing.
increment(a);
increment(a); Breakpoint 2, increment (ptr=0x@) at example.c:5
R ' 5 exit(1);
S [(gdb) bt
increment (NULL); 5
return @; // never reaches here z ::mmcrmnt (ptﬁxa:).t:tme:ﬁm?}e;:.:xmle.czu
(gdb)

1
2
3
4
g
6.
7
8
9
]

1

O i
S5GRERRE

N = =
S ©w

GDB Cheatsheet

See this GDB cheatsheet for a good overview of what's possible.

16

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Logistics

Regarding office hours

e There are a /ot of strange ways you can introduce bugs in the kernel

e Please do preliminary debugging as far as you can before office

hours, so we can give useful advice
o should know what test case in what scenario is failing

o if a function returns a different value than expected, figure out what line caused
the issue (is a strcmp failing? is a NULL ptr check failing?)

e \We may ask you to find out some information about your error
before getting back to you

18

Discussion Board

If you've tried debugging and have come up against a wall that would take too
long for office hours, consider posting on the discussion board.

Include DETAILS

e \Whatis the problem (What did you expect to see? What actually
happened?)

e \Which methods does it manifest in

e \What does work

e \What debugging have you tried, & what did you find

19

Reminders

e Find alab partner and fill out the form by today!
e Read through lab 1 handout and other relevant docs

20

https://docs.google.com/forms/d/e/1FAIpQLScKSdoElh5eu2bqYFZeTwxgT2dJ7nX6J0ldNCXqHDJntlqkJw/viewform

[.ab 1 Intro

What is xk?

- xk stands for “experimental kernel”

- the teaching OS you will be extending throughout the quarter
- needs to understand different parts of the codebase for each lab

- we will run it on QEMU (hw emulator)
- asimpler version of the early linux kernel

22

Summary of Lab 1

e learn to run xk and debug using GDB
e read existing code and understand existing design decisions

e implement file syscalls

o parsing and validating syscall arguments
m see implemented syscalls for reference (sysfile.c)
m argptr, argstr, argint, what do these functions do?
o create open file (I/O) abstraction
m user: file descriptor
m kernel: file_info, file_* functions

o perform the requested file operations
m use the existing xk filesys (kernel/fs.c)

23

List of Syscalls To Support

open (filename)
returns a per-process handle (file descriptor) to be used in subsequent calls

dup (£d)
allocates a new file descriptor for the open file mapped by the £d

close (fd)
closes/deallocates a file descriptor

read/write (fd, buffer, bytes requested)
reads or writes bytes into/out of buffer, advances position in file

fstat (fd, stat)
populates stat struct with information of the open file mapped by the fd

24

File Descriptors - User View

e implemented as an integer

e used forall I/Os

o network sockets
o pipes for interprocess communication
o applications can use read/write regardless of what it is reading/writing to

® per-process construct
o the same fd can map to different open files in different processes

e Kernel should not trust file descriptors passed by user
o what could go wrong?

25

File Descriptors - Kernel View

e kernel allocates a file descriptor upon an open or dup
o must be give out the smallest available fd
o need to manage fd allocation
m where might you store fd => open file mappings?
o there's a max number (NOFILE) of open files for each process
m what should happen if a process try to open more files?

e kernel deallocates file descriptors upon close
o close(1) means that fd 1is now available to be recycled and given out via open

26

The Open File Abstraction: File Info Struct

Needed to support richer semantics than what the xk
filesys currently provides:

the same file can be opened in different modes
implicit file position advancement

multiple fds can map to the same open file
allocation & deallocation of the open file

File Info Struct

27

The Open File Abstraction: File Info Struct

What info do we need to support these semantics?

reference count of the struct
o how many fds points to this open file (why is this important?)

a pointer to the inode of the file
current offset of the open file
access mode (check out inc/fcntl.h)
anything else?

File Info Struct

28

Allocation of File Structs

After defining the file struct, you can pre-allocate NFILE amount of file info
struct as a static array, and then actually allocate the struct when needed.

. : : File File
File File File
! I Struct Struct

Struct Struct Struct

Index 0 Index 1 Index 2 Index Index

NFILE - 2 NFILE -1

= Available

29

File_* Functions

Should implement a file_* for each of the file syscalls

File_* functions should take care of changes to the file info struct
advancing the offset
manage open file (file info struct) reference count
allocate & deallocate struct when needed
checking whether an operation is allowed given the access mode

30

The xk Filesys: Inode Layer

iopen
looks up a file using a given path, returns inode for the file
increments the inode’s reference count

irelease
decrements this inode’s reference count

concurrent readi
read data using this inode

concurrent writei
write data using this inode

File layer provides “policy” for accessing files, inode layer provides “mechanism” for reading/writing

Note: For Lab 1, don't worry about what inode is, just need to invoke the corresponding func.

31

Lab 1: Start Early!

- It takes time to set up and navigate the code base
- Compile Time Issues
- Getting comfortable with gdb

32

Git Resources

- Git manual: https://git-scm.com/docs/user-manual
- Git tutorial: https://learngitbranching.js.org/?locale=en_US

33

https://git-scm.com/docs/user-manual
https://learngitbranching.js.org/?locale=en_US

