
4/12/24 Locks & Monitors

-> Types of Locks
-> Spinlock : spins on the CPU While the lock is busy

↳ wastes the Spr

↳ Why use this atall on a single core system
?

-> sometimes you can't block ! (intermyt
handler context)
-

-> still good for short critical section -> locks usedby also

disables interrupts
-> sleeplock : blocks/sleeps while the lock is busy

↳ context switchoverhead

(scheduling, switching(AS)

-> Lock Granularity
-> how much shared data should a lock protect ?

&
-> a single lock for an entire array (coarse grained IIII ...

-> does provide safe access , simple , easy to perform multi-entries ops.
-> no concurrent access to the away

88855
=> cango finer (protect

-> one lock per array entry (fine grained IIII
...

partof a struct

-> allows for concurrent independentops on each entry XK : PCBE

-> higher locking overheads , easier to get deadlocks onlylessed Did
faltable

scheduling state

disable interrupts accessed by processes (exit,wait)

7
3 ↓

-> avoids preemption
& the scheduler

-> provides mutualexclusion
ona single core
-> privilegedinstr· notgeneral

E

-K inode case study

↑ acquires
back

acquires
ride sleeplech

spintsprotects
etfield ofeyone
struct

Monitors

-> design pattern & synchronization construct that
coordinate threads based on events

I

-> a monitor - a lock + resource states t condition variables
- -

doesn't matter track states used manages
waiters ofa condition

what typeoflock, for determining conditions -> Wait [XK: sleep]
protects accesses to eig - child-state put the calling thread to waiterlist
conditions & Conduars = ZOMBIE blocks thethread& releases the lock atomically,

reacquires the lock &then returns upon unblock

-> Signal ·Wakeuawater(Blockingel,,,the

-

-> Broadcast [XI :Wakeup
wake up all waiters , used

whenthe condition

may enable multiple
waiters. L e.g. N threads

need to wake up at time x)

function can be accessed by many
threads

Basic Pattern access to condition&conduars mustbe protecteduflock !
-

consumeL) [↑ A if block lock roduce (15
C-WatE lock ,acquire);

release is not p
atomic , weatomically will have lock, acquired);releasesthe While C ! Condition) &

lockablocks, - lock-release);& S Igenerate conditionL other threads cause 7 ↓ CV-wait (lock) ;
(otherthreads may 2 Ichanges to shared states
run& change states

reaquires the /3 cr-wait(); condition= True;

monitor lock 11consume condition lock-acquires;
-signal()'s

updates waiter's
which suffers

before returning condition= Falses from time of lock , released); A

scheduling
te

check to time

lock- release) ; of use : wait is
done bic sond is false, 33 but that might no

* Spurious longer be true !

Wake ups : When athreadwakes up,the conditionmightnotbetrue!

MESA Monitor : has this semantic
, a

new thread may acquire Hoan monitor : thewokenup
traiter is

thelockbefore the wokenup water guaranteedthe lock next (after signaling
thread releases (

