
4110/24 Threads Wrapp & Locks
-> Thread Execution

int + = 0 : Ilglobal var value of x at the end

thread-funch)55)
-> 1 : to finishes then 2 runs

if (x < 1) S -> 2 : t t2

x++ j ifLX<DE
3 if (x< 1) E

3 x++j3
x++j3

A time of check to time of use!
-> race condition : scheduling orders cause semantically different results

to +2.
value of global x ?-

SS 1 or 2,

load intoreg

S add 1 to reg t1
.

+2

write reg
backto memory load X=0of

Loadx= 0

add1
add1

.

- write I back
to X

write) back

to

How to get 1 ?

to +2-t100

load 0

Serge
add1

Unite1to

=>

1 100

to get 2 :

+1 t 2 .

to get 100 :

th loads O. loadsO
- loads o

to reas to runs 99 iter

completion x =99
x =106 adds 2 to0

runs 100 iter writes =1
X =100

runs the 100th
iteration
loads I

runs to

completion
x= /00

adds 1to1
wites = 2

-

2 Zor

Thread Execution
-> reasoning about shared state is difficult wout thread coordination/synchronization
-> synchronization primitive : tools that help us synchronize threads

Locks (mutual exclusion)
-> a synchronization primitive that guarantees exclusive access to a

designated section of code (critical section)

-> APIS :

lock-acquire () ; 11 acquires the lock, doesn't return until the
caller becomes the lock holder

lock-release) ;11 release the lock

-

Locks Properties
-> Safety : only one thread in the critical section at a time
-> Progress : a thread can enter the critical section if no one else is in it
a liveness property

-> BoundedWait : there's an upperbound to how long a thread waits before
a fairness property entering the critical section

* lock is just a tool , programmers
need to use it properly for

it to be effective : lock-acquired) ;
1/access shared state

lock-released);

Lock Implementation (First Attempt)

struct 1k [bool locked ; 3 lock-release (struct1 /) E
Ik-locked = false;

33 lock-acquire (struct (* (2) [
called While (1k-locked) < ; 3

3
by
multiple
threads 1k-locked = true;

3

* violates safety !
I

Lock Implementation (Another Attempt
-> requires hw support for atomic read& modify
-> test a set instr

atomic!
-

> sets val to 1 if the current val is 0 , returns old val (o)
-> otherwise

,
does nothing , returns value read(1)

-> lock-acquire (struct (K* 1) < -> expensive instr

While (testaset(alk-locked) &3 While [
while (1k-locked) & 3&

I/ locked is already set to true by this thread if (testaset(a/k-locked)&
3 return;

compare& swap (another atomic instr) 3·

3

Types of Locks

-> Spinlock (spins / busy waits on CPU)

-> When the lock is not free , keep checking until it acquires the lock

-> sleeplock/muted
-> When the lock is not free, givesuptheLoseuntil it's free
When to use spinlock ? When to use sleeplock?
-> short critical section -> long critical section (210 access)
-> few waiters

-> long waittime <many waiters)

