
418/24 Scheduling Wrapp & Threads

Round Robin : FIFOWI time quantum , preemptive
-> unfair to tasks that didn't use the full time quantum
blocks after1 ms, other tasks run

* 10ms time slice 210 bound/interactive) haveto waita long time
compared to its runtimeonCPU

Coms time slice CPU bound

-> Option 1 : jobs whless time on the CPU are strictly prioritized.
-> IFS : linux default scheduler , timeordered red black tree,

schedules the task that spent least time on SPU, helps
it catch up to its fair share of CPU time

-> Option2: reduce wait time for 110 bound tasks
-> MLFR : a number of RR queues wh

different time quantams

seea
keep the110 tasks in the top queue, shorter waittime



S

Multilevel Feedback Queue(MLFR)
-> shorter time slice => shorter wait time

, good for interactive jobs
-> longer time slice => less context switch for longer tasks , goodfor CPU bound tasks

We higher
* Scheduler runs tasks from the higher priority

↑thnahtum priority
queue, if empty , goes to the next queue...

9 5ms taskAl taskB . . .

· current task will be preempted if there are new tasks
in higher priority queues.

IOms
· RR within a queue

20ms task cl . How do we know which tasks go to which Q ?
-> assumes all new tasks are short (top Q)

40ms
-> if blocks before time slice => same &

Lower -> if uses up the full time =>
downo Q

! priority -> Starvation for long tasks ?
-> canthis begamed by injecting sleep? -> priority boost (periodically move alltasks to
-> setmax time fora task perqueue

thetop Q)



stack Stack for th
- -

-Threads thread-createI
stack for +2

- -

-

-

-> unit of execution/task
S
Teap
->

heap
SS
-

data data
- -

-> execution states : PL , SP, registers code code

-> multithreaded program (concurrent) Single threaded multithreaded (2)
process * each has itsown process

user stack&-> divide program into tasks (threads) Kernel stack

-> Commency vs. parallelism -> extrate simultaneously
↳ structured into tasks > tasks take turn making progress (concurrently
* concurrency canhappen on single core , Kernel is always concurrent

Process= Address Space + 05 resources + 1 threads

-> threads share code, heap, data , but have theirown stack a executionstate
CPU, regs!)

-> managed& scheduled by the Kernel - Thread
Control
Block LTCB)



-> Switching btwn threads : context switch

save current thread's context onto its kernel stack

switch to the next thread's Kernel stack a pop the saved context

if the next thread is from a different process , load new address space& flush the TLB

xK : current thread -> Scheduler -> next thread

< pick new threadto run)



Pthreads API PC
-> pthread-create (thread-func, args)
-> pthread-join (id) waitfortid to exit , any thread canjoin another

-> pthread-exit (exit-status) terminate the calling thread.

-> pthread-detach uponexit , clean up resources (stack) automatically.
Idoes not require join)



Threads Execution

valueofX I
may change
in a multi-
threadedprocess ↓

timer interrupt


