
4/5/24 Processes& Scheduling
Process APIs : fork , exec , Low fork <performance optimizations
-

inherits os resources , every syscall needs to support behavior across fork
-> other APIs

-> spown : windows API that creates a new process running newcode
-> done : creates a new child processut precise control of what's inherited

Exit : should be auto
closed uponexit

· terminate the current process ↑

· need to clean up Istack ,
address space , &

PS resources (openfiles)
-

can these be freed by the exiting process ?
↑

① let another process (parent or nextprocess) clean up its memoryFite
As & Switch to a kernel only wa first, then the exting process can free its old

vas
can't be freed by the exiting process
be itneeds access to Kernelcode & stack

Wait/Watpid
Clets the process pickwhichchild to waitfor

-> allows the calling process (parent) to wait until a child exits
-> Kernel must track parent/child relationship (xK tracks this with

a parent pointer
-> a blocking system call
-> blocks until a child calls exit Low terminatedea

sleep a wakeup APIs in XK.

-> parent can clean up child's memory once child exits
-> but parent doesn't haveto call wait...

-> can hand its children to the init process , init will then clean up their memory

Scheduling
-> policy for deciding who runs on the CPU next
-> schedules processes a threads
-> task based evaluation

-> metrics

-> latency (turnaround time)

enterperced timefor
a

task onaentime
put-> throug

-> fairness a starvation
-> similar time on CPU, similar time waiting
-> does the policy cause any task to wait forever

-> Scheduling overhead
-> cost of doing scheduling (policy runtimea context switch times

Scheduling Policies

- FIFP
(or till itblocks) *No preemption

-> run each task to completion in FIFO Order
-> no starvation , low scheduling overhead (minimal context switches)

-> latency & throughput highly dependent on arrival order

A= 10ms B : 20ms C = 100ms
170MS

total
[A , B, CJ As latency = 10ms, B's Latering = 30ms , C's latency = 130ms latency

350ms

[C , B , AJ C's latency = 100ms , B's latency = Roms · As latency = 130ms total

latency

&

-> Preemptive Shortest Job First (PSJF)
-> schedule task needing the shortest time on CPU
-> if a new task (or unblocked task) arrives wh a shorter

CPU time, preempts the current task& runs the new task

-> minimize average latenly , avoid having shorter task waiting behind
-> more context switches compared to FIFO longer task

[C , B , AJ B preempts 2 . A preempts B and runs first

-> leads to starvation of longer task

-> Round Robin

-> FIFOw/ time quantium (10ms-100ms)

-> preempt once time slice expires
total latency

A[C , B , AJ 10 c / 03 / 10 a (/02 / 10b/10... 210MS

coms time Slice As latency = 30ms , B's latency = 50ms , C's latency = 10ms
A context switch time
is negliblecompared
to time sline

-> no starvation, more predictable latency compared to FIFO

-> fair ? a task that blocks before time quantum has to wait
the same amt of time as tasks that use theentire time quantum

