
4/3/24 ProcessesContinued
using theCPU,
off theready queue

scheduledto

ELF loading
RUNNABLE (XI)

I
run ↑

11

Setup 3 ZOMBIE
VASAPLB

readyE
time slice expired

= waiting for an event
- -

-> 210 , timer, etc.

eventterred . as soon as

a process blocks,
L Kernel schedules
waiting anotherprocess to run

* Kernel must track what event aprocess is waiting on

Process Control Block

scheduling
state

·

event ↳

waiting
for

fdtable

sleep (chan...) = Waiting for event (chan)

xk(wakeup (chan) = event has taken place, unblock all processes
waiting on chan

Process APIs : Fork child parent
- -

-> creates a new process that's an exact copy of the calling process atthe
forkt)

time of fork
x =2 -> X=2 cent

changes y=3 child
-> Where should the child start execution?

L " "after -> same as its parent, returnfromfork.
fort I

not Tarent child Ishould have the same trapframeI
visible HAS VAS
to child * values except for % rax]

separate processes, physical L
memory the syscall return

separate translation tables, value.

their own kernel stacks, parent= actual callers receives
OS resources inherited (open files)

- child's pick
child = didn't actually call fork,

receives o for return val.

-

man 2 fork (manpage)
How many processes in

total ?

fork() ; fork() ; pid = forkI) ;

fork() ; if (pid == 0) [
I parent forkL) ;
I child

1 parent 3

I child I

1 parent
I child (and forks

I child
I grandchild (and forks

I grandchild.
↑

(19Placesthetrent)

therepreferenis
(rsp = program B's args) .

Fork exec combo

-> simple Semantics

-> easy to support redirect
-

example : Is > output

pid = fork();

if (pid ==0) <
fd = open ("output");

Close (stdout) ;

deep (fd) ; 1) Stdout = output:ext

exect
= /s"); 11 Is prints to stdout which is now output,ext

3

Fork : Copies parent's memory , sets up appropriate translationtable

EXCL : gets rid of current UAS , set up a new VAS & t for the process
[highly inefficient!]

-> Copy-on-write (cow)

nw
detects -> share the same phys , memory for

* Kernel needs to mark all shared

sen S as long as possible (until a write) memory as read only
I violation L

-> upon write, makes a copy so the Write will then cause

write can be carried out independently
a page fault exception

I needs to differentiate
low from actual permission

·

violation)

