
4/1/24 Mode Transfers Wrap up & Processes

Mode Transfer (user -> Kernel -> user)

HW-> Switches into Kernel mode , saves user's PC & SP , switches to Kernel stack,

pushes saedregs on to stack , Sets PC to Kernel handler (specified by IDT)

ob -> pushes rest of the regs onto stark

os -> executes handler logic

oS -> Kernel handler pops saved regs.

HW-> pops PC & Sprchback) , Switch to user mode

user
- resumes execution

process

-



XK code flow

up
trap

set

Iframe

-
-

Kennel
handless in IDT entries saving

ister actual
19state handler

logic



inc/trap-h



System Call Arguments & Validation

-> x86-64 calling convention : first 8 args in registers (rdi, usi, rdx ,r(x
...)

rest on the stack.
-> Where are the syscall args ? trapframe ! (kernel stack
-> argument validation
-> String args (nul terminated , need to validate memory address

-> void * & Size multithreaded process
befor accessing1t D or processof shared

-> out of range fd .

memory may change

-> return value ?Ivax in the trapframe !
the string post validation
-> needs to make a

Copy of strangs.



Process Abstraction
(virtuals space)

-> running instance of a program Process's VAS

-> consists of ↳
1). execution stream (thread)

ap
-> rip , stack, regs . -ata

--

Code
2)

. Virtual address space
3)

. process metadata (Process Control Block) ->Struct prot
imXl.

-> process ich, Kernel stack , OS abstractions (file descriptors , open files)

-> isolation & protection boundary
-> failure isolation

-> no visibility into other processes unless explicitly granted



-

loading translation table is expensive
clearing TLB (caches address translation)

also expensive (causes more miss)
mappedwh

= Kernel
memory- processes' Kernelsupervisor

e ! ------ Kemel memory backed

↓ memory by the same
in xk, Stack - &physical memory

Kernel memory
-

mapped region
starts at Kernel =
KENBASE ↳ multithreaded

processIs software
-

Tata
-

Code

Process As Physical MemoryA

B



Process Implementation
-> program to process

?

- ELF tells the kernel the entry point of the program
& how to set up the LAS setup the

#areaders=Eachentryincludessicremony size,
load into

stack -
initial stack

-

->
-

intmain(

permission (read,mite,execute int argu,

array Charargu) :
VAS E

live on the
ELF File

Done setting upprocess's view are st determinton



-> Initialize PCB (Kernel stack)
-> assign pid , allocate stack

,
initialize file descriptors

-> how does the process start execution?
-> starts in the Kernel , follows the return path of mode transfer
-> Kernel needs to setup the trapframe to reflect the starting state of

the process

-> How do processes share a CPU ?
-> scheduling : Os policy on who should run on the CPU ?
-> let processes take turn using the CPU for a small aut of time

-> Round Robin context switch : switching ston
-> time slice/time quantum (10-100ms)

[
processes/threads , typically take place

e FIFO order in Kernelmode]


