
3/29/24 Mode Transfers

-> interrupts : issued by nw , high priority
-> Kernel signaling endof interrupt

-> also called external interrupts/hardware interrupts L Kernel/trap : 2)

-> serviced one at atime , Kernel sends FO] when done handling
-> can preempt exception & syscall handles

- exceptions : problem caused by current instr.
-> exception behavior varies
-> What if exception occurs in an interrupt handler ?

-> syscalls : requested by user
-> Software interrupt(INT syscall")



Mode Transfer Mechanisms

-> upon mode switch , hw overmites % rip with Kernel handler address

so useene
-> must save process's Trip before overriting 3

process's
states

States states
-> mustsome user's regs . somewhere too
-> Kernel handler execution also needs a stack

- can we save everything onto the user stack a use itfor
execution ?

-> Who has access to the user stack ? # prothreadinaa-> Kernel handler may push Kernel data outo
to the stack)

the stack , what else might bepushed ?

stack



-> separate Kernel stack
->Stack switch on

callocated in Kernelmemory mode switch

Kernei/
interruptprocess's & 7
Stack

stack -

processor state -> pusheda
LOF , IF ... )

N

How many Kernel stacks are there ?
-> one per process



Kernel
handle
rushes

the

'rest of regs..



one per internet/
exception/

Kernele eregsmi
syscall



How doeshw know which handler to load into % rip ?
-> Interrupt Vector Table / Interrupt Descriptor Table (x86)

initialized by OS on startup

allocated as Kernelstatic data

away Kemel
entry address handler

x- -
for Table (architecture]-> x86 Interrupt Descrip

-> Table of 256 entries tellinghiwhere
->

array
index = interrupt#

↑ IPT is located.

array entry= handler location


