
5/29/24 Mettdam

-> exploits side effects of minoarchitecture optimization to
allow user processes

to read arbitrary kernel memory (including physical memory mapped into
the Kernel)

-> microarchitecture optimization
-> CPU pipeline : fetch

,
decode

,
execute

, memory subsystem-

-> every instr · goes through each stage
- an instr may

stall in execute (e.g .
mem access)

-> other execution units go idte"
-> or we can schedule subsequent instr. execute
A out of order execution !

j ↳ results stored in temp buffer/ register
↳ retired (visible) in order

* intel processors enforce perm , check at

refire time; not execute time



-> cache attacks
-> corcaches : 11

,
L2
,Ze

shared
, physically indexed physically tagged .

- cache hit is noticeably faster
-> flush + reload

-> attacker/receiver flush every cache
line , wait for a while

-

-> ricim/sender access memory , causing
certain cache lines to be filled

-> attacker/receiver reloads every cache line , measure the time for each
access a learn the access pattern from victim

ocachehit on reload.

-> Kernel memory
: physical memory mapped

into Kernel
memory,

Kane memory mapped into every process's VAS.



-> The attack :

↓ flush all cache lines)

O read te of Kernel memory I should raise an exception
A if this is executed before theexception② access (user-away [Kernel byte x4096]) is raised, cenuse the tempresn'tfrom

↳ 256
pages large ①& leave a footpaint!

③ install a custom SIGSEGV handler , upon an exception , reload cache
line to figure out the value of Kernel-byte

-> Mitigation :

Kernel page table isolation

-> only map a small part of Kernel
necessary for trap/interrupt entrance
into every userAs

-> switch to a full kernel pagetable once
in Kernel mode


