
5/22/24 Log Structured File System
-> a type of copy-on-write filesys
-> goal : optimize for write performance

on disk

-> Why not reads ? assume cache can serve most
reads

-> isn't FFS also designed forgood disk performance ?-

C in place filesys

-> block groups , place related data in the same block group.
-> how does this

importtime
a rotational time. .
-

structures (inodes , bitmaps , datablocks)
smaller arm movement still live on noncontiguous disk blocks,
still several ms each write incurs its once rotational

delay I waitfor desired sector
to spin under the disk

head)

-> How does LFS optimize for with performance ?
-> reduce seek & rotational time

A almost onlymite large sequential chunks (I seek + 1 rotationala
-> core structure of the filesys is a sequential log
-> all updates are buffered in memory until it fills up a segment

(several MBs)
-> When a segment is ready , append to the log

segl...

allmodified blocks are written into
seg the log , source of truth= latest version

Newdata log
inthe log

new inode, & data & metadata keeps changing locationnew inodemap /

upon every update !
-> avoid the recersive update problem of a levelof indirection

-> inde map : inode#-> block#

Isharded into many pieces , each piece track a disjoint range ofinodea

Inode map
: keeps moring location on

disk

-> normally completely cached in memory
-> easy for reads , inde map

-> inode -> data block

-> but how do we find all piecesof inde deep upon start apl.
-> tracked by the checkpoint Region (CR)

* the only structure thatlives in a fixed location

#
-> tracks a consistent snapshot of a ts state

log
-> stores head& fail segments (range of

A

seriodically
log entries that makes up the to statemitter, (30s) ,

not upon
each segmentmite ! -> stores location of inde map pieces

might be stale

-> writing to
LFS : Log is a circular log , just append to the fail

segment, no need to trac bitmap I

-> Crash Recovery
-> on boot, reads from the latest valid checkpoint Region
-> how's R repeated?

can span overmultiple blocks
-> if we only reserve (loc for CR
then we can detect invalid with

but would also lose a consistent

CR due to overwite !Ea/mplete
-> reserve space for 2 CRs !

CR
orewrite the invalid or older

-> wait ... isn't R updated infrequently ? OR for every update

Tl valich
can keep applying segments post theCR fail

region to roll forward the system

Garbage Collection identify livedate him
imdemap

-> live inodes
↓

-> SegmentIs
are livee some aregarbage pointto live

↓ data
each has a segment summary (sometimes multipl

...

tracking each data block's inode & offset
-

if we look up
the indemap using this into and

-> compact live blocks find amatch , block is live , otherwise, block isgarbage
within multiple segments,
write into a new segment!

