
5115/24 Crash Consistency
-> FS Operations

-> create , read , write , renamee...
modify multiple filesys

- - - metadata & disk blocks

- - (bitmap , inodes)

① allocate a new inode ① allocate data blocks
Linode bitmap write) C data bitmap wite)

② update new file's imode ② update file inode ul sizea new data layout
C file inode write) 1 file inode write

③ add new dirent to parent dir is write new data

(parent data write C file data block write

① update parent dir file size

(parent irode write



-> Filesys Persistence Model

-> fs use cache to speed up performance : inode cache , block cache

-> fs operate on eachedblocks -> When cached blocks change,
when should we unite them back?

-> write through cache
↳ persist changes immediately , every op persists right away
↳ problem : slow ! lots of disk writes , frequently modified

blocks keep getting mitten to disk
-> let user decide

* Kernel periodically ↳ Asops are not persistent by default (on cached blocks)
flush cached blocks 2 user request for persistence via
(10 - 30s)

O Sync : flush all cached blocks to disk
② fsync : persist changes associatedof the file

-> doesn't flush dependencies (parent dir)



Crash Consistency
-> ts op generates multiple disk writes

-> file write : inode
,
data bitmap , data block a may crash after any write

-> concurrent disk requests can bereordered

-> Crash before all requests completed T interrupted by dish210 completion
-> no unites made to disk ? fine! nothing changes
-> only data bitmap made it ?

-> bitmap thinks a block is used when it's not !
-> leaks blocks " inconsistent filesys metadata

-> only file inode is written ?
-> inode thinks the data block is allocated A leave data content
-> while bitmap can cellocate it to someone else

inconsistentfs metadata"

-> only data block is mitten?
-> fs metadata is consistent, allgood
-> user lostdata (butalso haven't

heard back from fsync !)



What to do ?

-> Resolve Inconsistency : filesys checker (fsch)
-> start from superblock , check its validity & walk through the As
structures on disk

-> inconsistent bitmap & inodes

-> blocks allocated by bitmap but not tracked by any inode
-> resolve by marking them free (why is this safe?

-> blocks free in bitmap but tracked by an inode
-> resolve by marking them allocated

-> check for consistent namespace
-> Scan through directory entries (starting from not) to see if
all allocated indes are referenced by dirent
-> more valid yet not referenced inodes to lost+found folder



-> Avoid Inconsistency : Journaling / logging
-> mismatching granularity of atomicity

-> disk supports single block atomic repolate
-> fs wants single atomic operation (multiblock updates)

-> transaction : abstraction that groups arbitrary # of updates into
an atomic
unit

Ex-begin
mitete +x- write (bi)

logging : reserves log space on disk , write +xn
los

into log first, after log is persisted , applyI +x-write (b2) changed blocks to their actual location
+x-write (bs)

tx- commit
* changes are written twice , once to log d once to
their actual locations.

A apply committed exns upon recovery


