
5/8/24 SSD & Filesys Basics

Solid State Drive
-> persistent , block addressable , large capacity

Units : blocks , pages

NAND Flash packages DDDDDDD
connected by multiple DDDDDDD
channels, highly --

parallel architecture

a block contains hundreds of pages,

page is the unit of read/write.
(4(B)

no moving parts

SSD Operations
-> read a page (4kB) : fast access - loMs

-> write a page
(4KB) : can only write to a clean page (all bits are set to 1

(program) program
bits to Os to write data-looms

-> erase a block (18MB) : erase all pages within the block (all Is)

slow operation~ 1-3 ms

#

To do inplace update on SSD
Wantto reprogram program w/

new datathis page (metadata)Team ↓ ↓ * there's a valid bit
page 111 Crase⑪DDDD DDDDDD program DDDDD associated wh each

->
->

&

/ fDDDDD DDDDD S DDDDD page , easy way to
mark

programmed garbage
page

save valid programmed page(s) restore valid pages
elsewhere (some cleanpages) wl saveddata

SSD Reliability
-> a page can only reliably endure 10-100k writes
-> repeated mites to pages cause frequently modified pages
to wear out faster (no longer retain data reliably

-> wear-leveling : spread writes to different pages towear out
pages evenly => each wite moves the data to a new pagecurrent -

versionof data
21 ↓ moving data around all
D * Flash Translation Layer the time not good for SSD
DDDD

-> translate logical block address
clients , better transparent!

↓

physical block address

-> garbage collection
-> more sparsely valid pages into a

new block,

frees up a block for erasure

SSD Request Latency
total time = access latening + transfer time + Lerasure time

-> latency of a read page request given loms read latencya 500MiB/s
H

17. 8 as
-> way less sensitive to access patterns 7 . 8 Ms

-> much closer performance for sequentiala random accesses
-

may be parallelized.

Filesys Basics
user code (e .g. XK

testprograms)

↑ user libraries (e .g- Wibic
: state) = open , stat, close)

-
f.
>

create files/directories abstraction on
top of dish blocks

carre -> caches disk blocks

