
3/27124 Dual Mode Execution
Os must be ableto

prevent processes fromOS : manages & abstracts hi resources doing certain things
-> east of use , common interface , managed access &

How might os achieve this ?

-> option 1 : inspect program binary for "bad"
instr & memory access.
(but process may dynamically overmite
code& perform anthmetic on
address to bypass the check

-> option2: dynamically interpose every instr. a process
is executing.

↓ instr

highly inefficient, Hernel InvalidNop/terminate
would bebetterto ↓ valid

only involve theS When Hi
something goes ming



* Ring 0 (Kernelmode)
- Protection Rings : supported by nw -> access to privileged instr.

privilege violation ->

eg . halt, 210 sensitive instr,L

detected by update virtual memory mapping

nw
, control

-> access to allmapped virtual memory
transferred
to Kernel -- --> Ring 1 &2 (devicedrivers)

-> no access to privileged instr. but some 10
sensitive instr. (copy datafrom110 port)
-> access to allmapped virtual memory

Kernel sets the privilege level
for each user process to be ring 3 * Ring 3 (user mode)

I can you find which
line, :

-> only nonprivileged instr.
does this in xk/kernd/prov. c ?] -> eg . add, push, mor, call, ret...

-> only useraccessible virtual memory



Privileged access must go through the OS

-> system call : user requesting Kernel Services (use filesys , startnew process , etc).

-> exception : how detects privilege violation or other errors
Kernel must intervene

-> interrupt : timely how
events that need to be handled by the S

I



Types of Mode Transfer
-> system calls. [synchronous] -> interrupts [asynchronous] needs to be

Ahandled in
-> Kernel Service APIs -> hardware notifications a timely fashion

-> syscall , sysret instr.
-> 110 Completion(diskwith, packetarrival),
timer interrupt

-> requested by user! -> unrelated to the current instru

-> resume on next instr. on return
-> resumes on the interrupted instr. on return

-> Exceptions [synchronous] (resolvable)

-> unexpected problem on current instr. exceptions & interrupts occer
in the Kernel as well !

-> access invalidmemory (nullptr, segfault),
divide by zero , execute privileged instr.

-> terminate process , or handle the exception
and resumes (retries thefaulting instru



-> Who is executing in the Kernel ?
-> the current process that switched into the Kernel

executes Kernel code (handlers)

Why is this ok ?
-> upon amode switch , hi updates process's % rip to

point to Kernel code . Process cannot execute arbitrary
instr

. in the Kernel.

-> Kernel is responsible for savinga restoring process's state
C+ hw)


