
5/6/24 User Level Threads & Storage Device
-> managed a scheduled by the user libraries/runtime
-> Why use them ?
-> cheaper to create a schedule
->Custom Scheduling policies

-> app specific decisions (important
look holders stay running,

-> cooperative scheduling
deadline drivenpolicies

-> schedule only when threads voluntarily yield
-> how does a userlevel thread run?
-> on top of a kernel level thread (switches Stun userthreads)

-> N : 1 Model N= M model (threadpool)(tasIs) Cworkers)

SSSS user threads ssssssss user"threads

↑ venetthread - m =3 (proportional
to # ofcores)

Kernel thread

-> What happens if a user thread blocks ?
-> how might it block ?

user transfers control to user scheduler
-> synchronization (e.g . Sleeplock- a schedules a different user thread.

-> blocking syscalls , exceptions that generate 110
-> the underlying kernel thread blocks , no user threads
can run on the kernel thread in the meantime.

Golang A How canwemitigate this ?
T goroutines -> use nonblocking syscalls when possible
go
S....3 -> keep some back up Kernel threads sleeping

,

wake one up to take over the rest of user
threads

when a user thread is about to make a blocking syscall.
-> class discussion : delay the blocking syscall user thread
&run other user threads until close to the endof our time slice

-> challenges : how do we know howmuch time
slice is left ?

whatif it changes (MLFO) ? What if syscale is on the
crucial

path of execution?

Storage Devices

-> persistent (non volatile) , large capacity , block addressable
-> hard drive /Spinning disk (HDD)

-> cheap per Gis ($10 -20 per TB)
-> physical movement needed (slow access latency , 10-zoms)

-> solid State drive (SSD)
(3X)

-> more expensive than HDD, cheaper than DRAM
-> no physical movement (faster access :Cons - 100us)

&

Hard Drive

Sectors Disk Request
-> 512 bytes , unitofreadawrite -> host (CPT) sends a request to the

disk controller

11 , 1
,

-> disk moves arm to the specifictrack
* seek time : 1 Coms (dependingon
-

howfarto
move)

average coms

-> wait for the sector to spin under
the disk head

depends on RPM,
*rotational time : 4-15ms
assume it takes half a
rotation to reach the sector (a)

-> transfer data backto host (for
a

read reg).
As transfer time : depends on ofbytes
transferred a disk bandwidth (80-160

MBIs)

Request Latency
-> total time = seek time + rotational time + transfer time

(ms)

Tomas
*
1024"Blois"

1000ma

->Lost of reading/writing I sector (512 bytes) 512B

-> given 10ms seek time, ROM , 10is
-T

= 0.004
ms

= 120RPS
-> total latency = 10ms + 4 ms

↳ = 8. 3 ms per rotation0. 12 RPMS
+0 . 004ms = 14,004ms !

-> 4 ms per half rotation (average)
-> cost of read/write 10 consecutive sectors

10ms + 4 ms + 0104ms = 14 . 04 ms A can we improve
random

access performance ?I seek 1 argrotation 5120bytes
-> disk head scheduling !

-> cost of read/write 10 random sectors serve requestsIf ulless Seek
14 , 004ms x 10 = 140 . 04 ms D time.

- -> CSCAN

single request 10 times (different tracks, sectors)

Metrics for evaluating disk performance : TOPS

110 Operations Per Second :
of 110 requests

total latency
-> Tops for 10 consecutive read requests
-10
14. 04ms

x 1000ms/s = 712 JOPS

-> Tops for 10 random requests
=

X 1000 ms/s = 71 jops140 104 ms

