
51 3124 Signals & User level Threads

Signal : a type of IPC , also known as software exceptions
a pre-defined set of events that processes can use to communicate.

Sending Signals
-> syscall : kill (pid , signal#)
-> Kernel also forwards some exceptions
-> SIGSEGU, SIGFPE, SIGILL

-> applicationmight beable to handle some
& recover from these faults

-> how to implement this ?
-> track apending set of signalsperprocess
-> enforce some sender/receiver restriction
-> processes from the same user can
send signals to each other freely
-> privileged process (root)



Receiving Signals
-> signal delivery is implicit to the receiver (no action required)
-> pending signals tracked as a set, multiple sends of the same signal

upona
result in a single delivery ; once the signal is handled, can be delivered again

signal

I
-> Kernel defines default actions for all Signalsdelivery ,

ifno -> a process can define custom handlers for most signals (exceptSIGoa
custom -

handler, execute via syscall signal (sigh , handler-func lives inusermemory.
default action, -> How to implement signal delivery ?
otherwise, execute -> a process must be in the kernel for kernel to deliver a signal
theCustom

handler
-> deliver a signal while a process is in the Kernel for
Whatever reason : context switch, syscall, interrupts , exceptions

Default action
Custom run custom returns& resumesection

exention user handler
cach

userresume
handler

7sigretum
-

signal Kernel ↑checks unmask ↑
↑ delivery forsignal signal kernel

prepfor
process A returning back to userspace processA resuming process A



More on signal delivery
-> a process can choose to block until a specific signal is delivered
-> helpful for synchronizing states across processes (SIGUSRI ,SIGUSR2)

-> a process can mask certain signals , preventing them from being delivered.
-> custom signal handlers are fully defined by the process , meaning
they don't have to return (can jump out of the execution



User Level Threads

-> So far we've only seem kernel level threads-
manageda scheduled by the Kernel ,"TLB , Kernelstack
context switch requires modeswitch

-> threads are good for abstracting independent tasks
-> but often the task granularity doesn't justify the cost of creating
a scheduling a kernel level thread :

userlevel
-> User feel threads

SS S threads
-

E

managed& scheduled by user libraries & runtime context

Kernel is unaware of their existence switch dowe

in user space,
-> mid end laptop can run 50-60million justa functioncall.

user level threads. *much cheaperto create
& schedule .


