
5)11/24 More Eviction

est onthecritical

When to evist? path ofmemory
X allocation

-> When we have to , when there's none left available

-> When free frames fall under a threshold can be done as a backgroundY
task

, always have frames to
allocate when needed

swap

Interactionwith
-> evict a frame => allocate a page sized block from the swap partition,

note the swap location for future access

-> access an evisted page= find its swap to from um metadata,
read content back to memory

-> upon a process est, free its swapped pages

Eviction Policies: What page/frame to evict?

-> FIFO
-> pick the page that's brought in first (longest time in memory)
-> a queue of frames in order of allocation

 -> doesn’t care about access patterns

Belady's
Anomaly

More
frames
may cause
more page
faults with
FIFO
policy

Page accessed in this order : A, B ,L,D, A , B , E, A , B, C,D, E

FIFO 3 frames ↓

Frame I A A ADD P E

Frame 2 - BB BA A d
Frame 3- - CC B BB BBDP

Y YXXXX
.

%

.

(9PFS)

FIFO 4 frames
↓

Frame I A A A A A A E EP
I

Frame 2 - BB B B B B A

Frame 3 -= C c CB B B B
- D D D DDD C

Frame 4
XXX X y x x x YYCOPEs)

-> Optimal Algorithm (minimum # of page faults)
-> assume we know all memory accesses (including future ones)
-> eit the frame accessed furtherest in thefuture.

-> Least Recently Used LLRU)
-> use the past to predict the future (like MEFO)
->eist page accessed furtherest in the past
->

Belady's anomaly ???
No ! Ntl frames contains N+ recently used pages,

a superset of N frames (R

How to implementLRU ? uses page
access as a counter

-> class attempt : tracks # of page accesses since a page is lastaccessed
-> needs a water for every mapped page in the system,
lots of data to update on every page access

"

-> needs to search through all counters to find least recently usedpage
-> common sw attempt : tracks a CRU quene II

software

~ intervention
-> moves accessed page to the end on

each page access is slow

-> evists from the front of queue(fast !) "

read on pagetablewalk
-> hw-based attempt : hardware timestamp > or in TLB anyway

-> hw writes the current timestamp to pote on every access . ↓

-> must scan through all ptes to find the LRU page

-> Clock (Approximates (RU)

-> hw updates accessed bit of the ple when a page is accessed.

* clock cares aboutonly
in ~

access -

-> goes through frames starting at clock hand
->
stateful (moves after every

eviction run)
-> points to a frame

for each frame starting at the
clock hand:

if (pHe accessed bit == 01 <

clockhand
evict page ;
more clockhand forward ;
return;

3else[
clear pe accessedbit;
more clockhand forward; 11 keep searching

3

-> Lost of Eviction
-> exits a code page ->> no need to evist

, already on disk (ELF)
-> cleans stack page E no need towriteout if nothing has been mitten.
* much cheaper to evist a page that doesn't need to be swapped.

-> Second Chance / Enhanced Clock
-> takes cost of eviction into account , uses both accessed a dirty bit
if (accessed bit == 1) <

clear accessed bit ; more clockhard;

3 else if (dirty bit == 1) &
clear dirty bit; add to list of dicty pages ; more clockhand ;

3 else ? 11 both bits are o

evict page; more clockhard ; return;

3

