
4129/24 Eriction

↳
-Stark

Thede ↓ per page metadata

process
As

kedlistoupeint--



software pagetable walk

indexing into the top levelPT

translate
to

stores
-> Kernel

virtual physicaladdr T address
- -

x86-64vm . (

Tinterto pe (lastlevel entry)
-> contains frame # (ifmapped)



Page Faults
↳
handled
retries instr.

-> valid page faults (demand paging , mmap, cow)-

-> invalid page faults (NULL , segfault, permission violation)
↑

-> terminates.

To handlea valid page fault= > allocate a new frame
-> what if there's no frame available ?
-> blocks until a frame is freed ? might block for arbitrary amount of

time
,
could cause deadlock

-> make a frame available by writing it to storage (swap)
capacity , slowerbut thewitelarge
!

-> select a process to kitl ↑

will finish
-> general purpose of tries to avoid it

-> will reclaim page cache, max
out swap before killing a process

-> happens more on mobile OSes lookfor onethat
uses largeanof
memory& young.



iOS developers trying to 
figure out memory budget 
for their apps to avoid 
being killed



Eviction Mechanism

-> wite a frame tomewhere on disk ess
disa

any free space
? Swaston

-> swap has different life time from a normal filesys partition
(no longer needed aftera crash)

-> OS manages the swap partition Callocation & deallocation
-> uses a bitmap to track usage info

1- in use eachbit represents a block's usage into.litt of free



Eviction Steps (after selecting a frame to eviit)

1) allocate swap space from the bitmap
2) . remove old page to frame mapping , TLB Shootdown

&

-> ensures no modification can be done on theevictedpagt.
-> possibly mapped to multiple pages ,mustremove all mappings !

what happenenessed -> how to find the pages ? per frame metadata (xK
: coremapS

~pageisera S3). write the frame to allocated swap block entry

-Pame 4) track the swapor of the evicted page somewhere
-> reuse pie ul the present bit as 0.

5). reallocate the frame to the faulting page.
-> zero out or overmite old data



Eviction Policy
-> How to choose an eviction candidate ?

-> Kernel frames ? pinned in physical memory (local page replacement)
-> shared libraries ? good forperformance

- isolation , butwhat
-> only frames within the faulting process ? should be the limit?

-> any frame
in the system?

-> flexible allocation

(global page replacement)

-> FIFO : a queue of frames based on allocation order , zict frame

-> bad access pattern ?

access page A B CDE on repeat over 4 frames
C -- .

#that the easimend
to mor page facts using

·

FIFO


