
4/24/24 Paying
-> divide virtual a physical memory into fixed

size pages

-

- -

-> page level
translation

- -
- 52bits 12bits

-
- -page loftset virtual addr
-

-

- -

↓ 12bits
-
- -

#fametloffset , physicaladdr
-

VAS 1 - VAS 2 translate
- offset

remains

offet thesame

F page frame

PageTable : stores translations for every page (hw page tablewalk)
-> Kernel sets up the page table ,

translation performed by how

* page table lives in memoryin
as

for every
virtual memory access ,

wehow

have tomake2 physical
memory access "

pagetablebase register ·

paddr of the-
page table

L
%cr3 imX86

xie's spaceinstal
wites to this register.

Translation Lookaside Buffer (TLB)
-> caches the result of memory

translation

* also caches the permission
of the page mapping (may

be

outofsyne
from the

pagetable)

hit

=miss wh
update
new

translationTVB
result

The cost of single away page table
-> per process data structure

-> 252 entries take up a
lot of space

How to reduce the page table size
?

-> Larger page size : 2 MB & IGB page size (largel superpages)
↓

44 zo bits

-less
pages , fever entries -offsetpaget
H

smaller page tables 252 = 24 entries

but

. pit
internal fragmentation

Maybe the problem is too many page
tables ?

-> Inverted page table
: tracks frame mapping instead (global)

indexed
-

-> How to look up givena
virtual address ?

by frame
-> page#,pid

-> search through each entry of theaway until#
-

- we find a matching page # r/pid.
-

-

works but very show "
-

- -> Use a hash function to place pages
-

-> lookup = hash(page #, pid) frames =>> frame#
inverted whatabout hash collisions ?
pagetable should memory ?

costof unmapped page?

Page frame mapping still better for look up !

Multilevel Page Tables : use indirection to only allocate entries for
pages in use

#

