
4122/24 Deadlock Wrapup & Memory Management
request I chopsticle

Deadlock Avoidance 3 Chopsticks ,
3 philosophers

ata time

- may a requests
A B C

safe O
(2) p(z) O

(2) avail : 3

starts out

can finish
~ avail =2 pulavait

A ~ Br C
to be avail = 2 I

safe (1)
(2) (2) 2- 1 +2 = 3

↓I O O LArequest ) more)" (A will finishe return both

A v B
~ avail =2

to be avail =1
?A can finish(1) 1 - 1 +2 = 2

safe (a) L 2 -0 +2 = z 2 B can finish

21 +2 =32 C canfinish

unsafe A X B C avail = 0

I
(t) (4) I

2) to be avail -O no one

canfinish
their futurerequest



Deadlock Detection

-> rare event, let it happen , detecta recover when it happens
-> Resource Allocation Graph

wait Fi held if there's a cycle :
Shigh false positive

for↑
p.

Lay · single instance resource => deadlock

- multiinstance resource -potential deadlock
need↑ Xwaitfor
by
It OstrichAlgorithm
= Po (if R2 has multiple instance) -> pretend nothing's

-> recover from deadlock
S

wrong, letuserdeal
wit

-> about/terminate a process in thecycle



Physical Memory Management
-> volatile , byte addressable , order ofGBs

->~200 cycles access latency

Problem : many processes ,
limited physical memory

-> Attemp#1 : let one process use all of physical memory
-> no need for translation

#sementwiteAst dismE
-> load B's VAS into memory

-> how do we enforce Kernel/user memory separation



-> Attempt #2 : Divide up physical memory among processes
baseA

->low contentswitch overhead
-> howdo we support

-> virtual to physical address translation memory growth?
-> base & bound registers (nw support -> variable sizec

PA = VA + base (VA < bound) allocationleadst base register. for process A fragmentation
to external

C
bound register

is doesn't

300 bounds

physical memory #itana



=
-> translation done on the entire VAS , can't sharepartof it



-> Attempt #3 : finer grained translationa permission

divide sharing pageA <library code)
the VAS

- A
into fixed -

-> better control for sharing·
-

-> fixed sized allocation (page4)

B ↓ no external fragmentation
accessed, (may see internal instead
notpaged in process

1's VAS process

physical2SLAS
- easy to support memory growth

memory
-> only load pages in use into

memory (demandpaging)
What should be translated

64 bits

virtual address1
offset within apage

11252

offsets = offsetwithin aphysicalpage .

page

only need to translate page


