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Deadlock Detection

-> rare event, let it happen , detecta recover when it happens
-> Resource Allocation Graph
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Physical Memory Management
-> volatile , byte addressable , order ofGBs

->~200 cycles access latency

Problem : many processes ,
limited physical memory

-> Attemp#1 : let one process use all of physical memory
-> no need for translation

#sementwiteAst dismE
-> load B's VAS into memory

-> how do we enforce Kernel/user memory separation



-> Attempt #2 : Divide up physical memory among processes
baseA

->low contentswitch overhead
-> howdo we support

-> virtual to physical address translation memory growth?
-> base & bound registers (nw support -> variable sizec

PA = VA + base (VA < bound) allocationleadst base register. for process A fragmentation
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=
-> translation done on the entire VAS , can't sharepartof it



-> Attempt #3 : finer grained translationa permission

divide sharing pageA <library code)
the VAS
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-> fixed sized allocation (page4)

B ↓ no external fragmentation
accessed, (may see internal instead
notpaged in process

1's VAS process

physical2SLAS
- easy to support memory growth

memory
-> only load pages in use into

memory (demandpaging)
What should be translated
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offsets = offsetwithin aphysicalpage .

page

only need to translate page


