
4119124
Write Preferring ReaderWriter Lock

Lock 1K; Condrar Leader-cr; Conduar witer-cri

int active leaders = 0; int waiting mites=o ; bool active -write= False;

read-acquired)[write-acquire () [read-release(1[write-release()[
ek

,acquire
is ; eacquies) :

tk . acquired) ; el . acquires;

while(active-wite 11 waiting-writers++; active-readers--y active-wite= False;
While (active-untel) if (active-readers =0waiting-miters > 0)
active-readers 20) [if waiting witesTod

3
Leader-Cr . Wait ((k); miter-2. Wait(1k);

ad waiting-miters 20) [witer
-
su. signal() ;

active-readers++; Waiting-miters--> writer-c . Signall); 3 elses
el2.releasels's active-wite: Tree; 3

reader-w .
broad

1k.Measel); Ik, released; castes;
3
Ilholds the read lock 3 Ilholds the write look 3 Ilreleases 3

upon success uponsuccess ex, release(I :

3

Read Preferring vs. Write Preferring
↳ can starve writers ↳ can do a similar hybrid approach
↳ variations :

to improve throughput
stop new readers from

acquiring read lock once
a threshold of wait time
or number of waitingmiters
is met.

Deadlocks

-> cycle of waiting threads blocked on each other

Deadlock Example 1 :

Lock A ;
thread-funct 1)[thread-func2()[

Lock Bj
A
. acquires; B . acquires;
B . acquires; A

. acquires;

3 3

Deadlock Example 2 :

2 bounded buffer A , B

thread- func11) [thread- funcIL)[

A . consumel);
B

.
Consumel);

B . produce (item); A .produce (item);
3 3

Deadlock Example 3 :

Lock 1K ; thread-funce 11 & thread-func2()3
Bounded BufferA; the acquires; the acquires;

<do something <do something
A Consumer) ; A . produce(item) ;
< do more things] < do more things]
ek . release); ek . release);

3 3

Necessary Conditions For Deadlock
Deadlock => All 4 conditions are met

& Bounded Resources : finite instances of resource
② No Preemption : resource can't be forcibly taken away
③ Hold&wait: hold on to resource while waiting
④ Circular wait : cycle of waiting

Are necessary conditions sufficient for
deadlock ?

Dining Philosophers Lguarantees)
-> Single instance resource (e .g . lock) yes

!

-> Multiple instance resources (e.g . chopsticke, producer a N

All 4 conditions are met !-> Deadlock

What to do wh deadlock ?

-> break any necessary condition breaks a deadlock
-> 3 types of approach : prevention , avoidance , detection

Deadlock Prevention
-> limit system/program behaviors to break a condition

resent some resources to deal

Bounded resources : provide sufficient resources (vlcases before running outof
resources

No Preemption : Let system preempt resources (resourcelease)

Hold& wait : release while wait I lock-try-acquire , acquireall API)
-

circular wait : lock ordering (total ordering of
locks

, acquire according tothere

Deadlock Avidance (Admission Control)

-> system determines When it's safe to grant resources
-> threads can do whatever they want (acquire lock inany order),

system delay granting request until it's safe to do so.

-> Dining Philosopher Example:
Rules for Chopstick fairy handing out chopstick (Wantthe permissive

111 -> hand out chopsticles freely until there's 1 leftEx
-> hand out the last chopstick to anyone it a philosopher

5 chopsticks, already have 2 chopstick
5 philosophers -> hand out the last chopstick to someone that already

request2
chopstick
each have a chopstick

at a
time,

needs 2
max .

I

* knows may request
Banker's Algorithm : for deadlock avoidance for each thread

-> Safe , unsafe , deadlock
↓ Y

there's at least 1 orderingto there's atleastIfuture
grant requests sit. everyone can request that will cause the

get their may requests eventually system to deadlock regardless
of the resource granting order

As only grant requestwhen -

doing so will keep thesystem
in a safe state! happensWhenthebad

↑ future request is
made

goesback
ureate unsafe

aft ↓
to
S

future safe

if
the
west is

reg
never made

!

