
Lab 4 Details

1

Administrivia

2

● Lab 4 is out and DD due Monday (12/2)! (No late days)
● Lab 4 Code & Questions due 12/9 (No late days)
● Lab 3 DD Revisions due Monday (12/2)

○ For W credit

More mkfs Details

3

mkfs.c Explained

Just as a reminder, mkfs writes the initial file system image upon make

Mkfsc sets up the inodetable, inum_count = number of inodes needed for the
initial fs image (user program binaries, inodetable itself, root dir)

How do we set up the inodes?
● ialloc allocates an empty inode, writes it to the fs image, returns the inode number
● read in the inode with rinode, update/write the inode with winode

4

mkfs.c Explained

5

by default, all fields of an inode
are set to 0, except for the type of
the file

when you change the data layout,
you may want to adjust ialloc to
set default values (if non zero)
for your new fields

mkfs.c Explained

6

When you update the data layout of the disk inode, you should search for
any reference to data.startblkno and data.nblocks,
and change it to work with your new data layout

If you do an array of extents, you can update these to refer to the first
entry of your extent array!

mkfs.c Explained

FAQ: Can you use ialloc to create a new on disk inode in xk?

Answer: No! ialloc is a mkfs function. Since mkfs is not build as a part of your
kernel, you cannot call ialloc in your kernel code. The same applies to all mkfs
functions!

7

Any Questions on mkfs?

8

Bitmap API

You interact with the block bitmap via fs.c: balloc & bfree

● balloc and bfree only updates cached bitmap sectors in memory
○ this is done through setting the bp->flag dirty in bmark

● if you want to write the changed bitmap sector back to disk, you must call
bwrite yourself!
○ hint: you can update balloc and bfree

9

Block Cache API

You can read and write disk blocks via the Block Cache in bio.c !

○ brings blocks/sectors into memory and manages them (evict, writeback)

○ struct buf
■ metadata for managing buffer
■ buf->data = block data
■ buf->blockno = the cached block #, very helpful for debugging!

○ APIs
■ bread: brings the block into memory, locks (exclusive access) the cached block
■ bwrite: marks the block dirty and issues a write
■ brelse: releases the lock on the cached block

10

In-memory inode

11

inode cache

inum = 0,
ref = 0, valid

= 0,
garbage…

unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

initially, all entries of
icache.inodes are unused

*diagram skipped cached root dir inode for simplicity

In-memory inode

12

inode cache
unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

inum = 0,
ref = 0, valid

= 0,
garbage…

user program:
open(file, O_RDWR)

In-memory inode

13

inode cache

inum = 0,
ref = 0, valid

= 0,
garbage…

unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

In-memory inode

14

inode cache
unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

inum = 0,
ref = 0, valid

= 0,
garbage…

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

In-memory inode

15

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

*in this example, inode 10 is opened for the first time,
 if inode 10 is already cached, iget simply increments
existing entry's ref count and returns a pointer to it

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

In-memory inode

16

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

freshly allocated (valid ==0)
inode returned by iget
does not contain accurate
disk inode data yet (hence
garbage)!

*in this example, inode 10 is opened for the first time,
 if inode 10 is already cached, iget simply increments
existing entry's ref count and returns a pointer to it

In-memory inode

17

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

 inode=namei(file)

kernel/fs.c:
locki(inode)

In-memory inode

18

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

In-memory inode

19

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

if inode is not valid
read in disk inode

kernel/fs.c:
read_dinode(10, …)

In-memory inode

20

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10

if inode is not valid
read in disk inode

In-memory inode

21

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 1,
dinode data

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10

use the result of read_dinode to
populate the in memory inode!

if inode is not valid
read in disk inode

In-memory inode

22

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 1,
dinode data

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

use the result of read_dinode to
populate the in memory inode!

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10And now this inode is
ready to be used for fs
operations!

if inode is not valid
read in disk inode

Part B: Concurrency

23

Notes

● concurrent_* should protect the corresponding inode functions

● what happens if multiple processes try to create the same file?
○ only 1 process should succeed in creating the file
○ all other processes should simply open the created file
○ how can you determine if a file exists?

■ be careful of time of check to time of use problem!

24

Part B: Concurrent FS Ops

25

Concurrent Create

● When there are multiple create calls to a single file, only 1 process can
actually create the file!
○ How can we achieve this?

■ only one process can look up whether the file exists and create it at a time!
■ time of check to time of use! the entire read modify needs to be atomic

● hint: is there any lock on the path traversal that can be used to prevent
concurrent lookups?

26

Concurrent Delete

● When a file being deleted has open references, it cannot be deleted!
○ how to check if a file has open references?

■ all opened files have their inodes in the inode cache!
■ that's what each file info struct track to request fs operations!

● When there are multiple delete calls to a single file, only 1 process can
successfully delete the file!
○ should only allow one process to check whether the file has open reference and

perform the delete atomically (similar to create)!

27

Part C: Crash Safety

28

Guaranteeing Atomic Operations

Now that our file system is writable, we need to ensure that it is crash consistent.
But what do we mean by crash consistent? Let’s take a look at an example:

Say we have “file.txt” which is 512 bytes long. We try to append 50 bytes to this
file.

Is this operation atomic?

29

Guaranteeing Atomic Operations

No! We need to multiple block writes to accomplish this simple append:

1. Invoke file_write
2. Compute new file size
3. Update size + extents on disk (dinode)
4. Update bitmap
5. Write the new file contents to disk

That’s three block writes!

30

Guaranteeing Atomic Operations

What happens if we crash before we write the new file contents to disk?

1. Invoke file_write
2. Compute new file size
3. Update size + extents on disk (dinode)
4. Update bitmap
5. Write the new file contents to disk CRASH

When we reboot the system… We think “file.txt” is 562 bytes long, but the last 50
bytes are garbage, not what we tried to write!

So how do we solve this problem?
31

Journaling

For any operation which must write multiple disk blocks atomically…

1) Write new blocks into the log, rather than target place. Track what target is.
2) Once all blocks are in the log, mark the log as “committed”
3) Copy data from the log to where they should be (apply the log!)
4) Clear the commit flag

On file system initialization(iinit) check the log for recovery
If not committed, do nothing
If so, apply the log (this is idempotent!)

32

Designing Your Log

● Specify a log header (metadata for the log)
○ a structure that lives on disk
○ should not exceed a sector

● Designed by you! Should at least track:
○ transaction status (committed or not)
○ usage status of log region
○ where to apply logged blocks

33

Log API

● The spec recommends designing an API for yourself for log operations:

○ log_begin_tx: (optional) begin the process of a transaction

○ log_write: wrapper function around normal block writes

○ log_commit_tx: complete a transaction and write out the commit block

○ log_apply: apply the actual content of the log
■ use at commit time and during recovery time

34

More on log_write

● log_write is intended to be a wrapper function for bwrite() operations

● Instead of writing the block to its location on disk, we want to:
○ Write the block information to our log region
○ Update the log header with the location of the block

35

More on log_commit_tx

● Should first write the log header to disk to indicate that txn is committed

● Then apply the log content (log_apply)
○ Copy blocks from previous log_writes to their actual location on disk

● Reset commit flag when done

36

How journaling works without
crashes

37

The Log
(on disk)

Step 1: “log_begin()”

Rest of the Disk

Make sure the log is cleared

38

Log
Header
commit = 0

…

The Log
(on disk)

Step 2: “log_write(data block 1)”

Rest of the Disk

Write into the log, rather than the place in the
inode/extents region we want it to go

Also need to track the actual location of the
data block so you know where to write
logged blocks to on recovery!

39

Log
Header
commit = 0

…

Data
Block 1

The Log
(on disk)

Step 3: “log_write(data block 2)”

Rest of the Disk

Write into the log, rather than the place in the
inode/extents region we want it to go

40

Log
Header
commit = 0

..

Data
Block 1

Data
Block 2

The Log
(on disk)

Step 4: “log_commit()” [1]

Data
Block 1

Data
Block 2

Rest of the Disk

Mark the log as “committed”

41

Log
Header
commit = 1

…

The Log
(on disk)

Step 5: “log_commit()” [2]

Data
Block 1

Data
Block 2

Rest of the Disk

Data
Block 1

Copy the first block from log onto disk

42

Log
Header
commit = 1

…

The Log
(on disk)

Step 6: “log_commit()” [3]

Data
Block 1

Data
Block 2

Rest of the Disk

Data
Block 1

Copy the second block from log onto disk

Data
Block 2

43

Log
Header
commit = 1

..

The Log
(on disk)

Done!

Data
Block 1

Data
Block 2

Rest of the Disk

Data
Block 1

We have both data blocks 1 and 2 on disk -
everything was successful.

For efficiency, we can zero out the commit
flag so the system doesn’t try to redo this

Data
Block 2

44

Log
Header
commit = 0

…

But what if we crash?

45

The Log
(on disk)

Example: before commit--CRASH

Data
Block 1

Rest of the Disk

On reboot (start up)…
There’s no commit in the log, so we
should not copy anything to the disk

46

Log
Header
commit = 0

…

The Log
(on disk)

Example: after commit, before clear–CRASH

Data
Block 1

Data
Block 2

Rest of the Disk

Data
Block 1

On reboot, we see that there is a commit
flag

We can then copy block 1 and 2 to disk --
even though DB1 was already copied over,
overwriting it with the same data is fine

Data
Block 2

47

Log
Header
commit = 1

…

Where Do I put the Log?

It’s just blocks on disk, so you can put it anywhere you want (within reason)

● After-bitmap, before-inodes is a pretty good place

48

Reflect the log on disk

In order to reflect log region in the initial disk image, what do you need to update?

● Mkfs.c
● Superblock struct

○ to track the location of the log region

49

What should log_write() do differently?

● log_write() instead of bwrite()
○ Just replace the bwrite calls with log_write!

● Instead of writing the block to its location on disk, we want to:
○ Write the block information to our log region
○ Update the log header with the location of the block

50

How do we synchronize log access?

We recommend tracking a single transaction in the log

● How do we ensure that log access remains synchronized?

51

Questions?

52

