
Lab 4 Intro

1

File System

Administrivia

2

● Lab 4 is out and DD due Monday (12/2)! (No late days)
● Lab 4 Code & Questions due 12/9 (No late days)
● Lab 3 DD Revisions due Monday (12/2)

○ For W credit

Think Back to Lab 1...

● Files were read-only
○ open() denies O_WRONLY and O_RDWR flag for files

3

Remember when we promised to
eventually allow writing to the file
system?

4

For Lab 4…

Your job is to:

1) Make the filesystem writable
a) remove file write restriction (no need to check T_DEV, will fail lab1test and that's fine)
b) change the inode layout to support file extension
c) support file overwrite (write to existing blocks, implement writei)
d) support file creation and deletion (allocate/free inode, adjust data in root directory)

2) Support concurrent file system operations
3) Make the file system crash-safe

a) implement some form of logging

5

Let’s go ahead and get
started!

6

Part A: Writable FileSys

7

Quick Reminder!

Make sure to first modify file_open to allow opening files in write mode (and
patch lab1 tests if you want to)

Note that Lab 1 tests pertaining to the read_only restrictions will no longer pass

8

The Existing Xk File System: Dinode & Extent

● dinode: metadata for
file & directories

● extent: tracks a
contiguous region of
data

● each file's data is
tracked by a single
extent

9

The Existing Xk File System: Dinode & Extent

● disk inodes are stored on
disk (persistent)

● can't store locks/memory
pointers! Why?

10

The Existing Xk File System: Dinode & Extent

● single extent => unable to
track more data regions

● padding exists to ensure
sizeof(dinode) is a power
of 2

11

File Growth

● dinode currently tracks just 1 extent but you need to support multiple
extents
○ initially only the first extent is filled with actual data, the rest are empty
○ upon each file extension

■ allocate data blocks and track it in the next free extent
■ should support at least 30 file extensions

○ each dinode must fit within a single sector
■ size should be a power of 2
■ padding the struct should help

● You must update other metadata within the dinode (size)

12

Example of Dinode With Multiple Extents

13

Change Dinode ➡ Change Reads

● existing read code (readi) assumes there's a single extent

● make sure to update this to work with new dinode & inode format

14

File Growth

● Ok that makes sense… but
○ what are the side effects of changing the dinode definition?
○ upon file growth, how do we update the disk inode?
○ upon file growth, how do we allocate new blocks?
○ how do we write new data blocks to disk?

15

Change Dinode ➡ Change the FS Image

● why are there files in the file system if it's not writable in the first place?
○ because the initial file system image is written with a POSIX program

■ mkfs.c! runs during make
○ mkfs.c understands the xk file system format

■ sets up superblock, bitmap, inode table
■ writes user programs and files into the image so we can run programs in xk!

● when dinode is updated, file system format changes, so mkfs needs to be
updated as well!

16

mkfs.c: Setting up Dinodes with Multiple Extents

● writes inodetable's dinode by populating it and invoking winode
● For an array of extents, you should update the first extent (data[0])
● make sure to update all dinodes written by mkfs.c!

17

Inode Cache

● Recall that for performance reasons, filesys always keeps a cache of inodes
○ check out the inode cache section of the lab 4 spec!
○ not all disk inodes are cached! only those that are open

● The inodes you've been working with are from the inode cache!
○ iopen allocates an entry from the inode cache and populates it with dinode content
○ irelease decrements an inode's ref count and evicts it from the cache when ref == 0

18

https://gitlab.cs.washington.edu/xk-public/24sp/-/blob/main/lab/lab4.md?ref_type=heads#inode-cache

Change Dinode ➡ Change Cached Inodes

a cached (in-memory) copy of the disk inode

also stores in-memory only information (lock, ref
count, valid)

should update "data" to be consistent with dinode!
cached
from
dinode

19

Synchronize Cached Inodes With Disk Inodes

fs.c functions operate on cached inodes, but changes must be written to disk to persist!

20

● update inode with on disk inode content
○ iget: allocates an entry from icache, valid is 0
○ locki: if valid == 0, read disk inode read_dinode, and populate the inode fields

Synchronize Cached Inodes With Disk Inodes

fs.c functions operate on cached inodes, but changes must be written to disk to persist!

21

● inode changes are not automatically updated to dinode
○ consider writing your own write_dinode function to write out a disk inode

dinodes live in the
inode table on disk

update a dinode =
writing to the inode
table at an offset

More on write_dinode

● Should look just like read_dinode but calls writei instead of readi

● When should write_dinode be called?
○ in writei, when the inode changes!

● But wait, write_dinode calls writei, wouldn't there be an infinite recursion?
○ writei(file inode) => write_dinode(file inum) => writei(inodetable, INODEOFF(file inum))
○ does the last writei make changes to the inodetable's inode?

■ no! it's an overwrite! the writei to inodetable will not trigger more write_dinode!

22

Block Allocation

● done through bitmap! (kernel/fs.c)
○ bitmap sectors live on disk and track the usage information of all disk sectors
○ xk provides functions to manage the bitmap for you!

● balloc()
○ allocates consecutive blocks for a given device
○ panics when not enough consecutive blocks available
○ no guarantees on the content of returned blocks

● bfree()
○ frees consecutive blocks for a device

23

Block Allocation

WARNING: balloc and bfree only update the cached bitmap sectors but do
not change the bitmap on disk.

To persist your bitmap changes, you need to update them to write the changed
bitmap sector to disk.

24

Writing Data Blocks to Disk

● Just as we have a cache for inodes, we also have a cache for disk blocks!
● FS interact with disk blocks via the block cache (kernel/bio.c)

○ brings block/sector into memory and manages them (evict, writeback)
○ struct buf:

■ metadata for managing buffer
■ buf->data = sector data

● update buf->data to new data content!
○ block cache operations:

■ bread: reads the sector into memory , locks the cached block
■ bwrite: marks the block dirty and issues a write
■ brelse: releases the lock on the cached buffer

25

Phew, that was a lot of content!
Now you are ready to implement

writei!

26

writei

Currently, writei returns an error when writing to non-device files… Let’s fix that!

27

writei

Overview of writei arguments:

● writei(inode, src, offset, n)
○ inode: file to write
○ src: content to write
○ offset: offset into the file to start writing
○ n: bytes to write

28

writei

You need to allow for overwrites and appends in Lab 4!

Writing to a file can extend file, two cases:
● Overwrite: no change to metadata, change data in existing data blocks

○ E.g.: file of length 100 bytes, write 20 bytes at offset 0 is just an overwrite
● append: metadata changes, add new data blocks!

○ file of length 100 bytes, write 20 bytes at offset 90 appends 10 bytes to the
file

○ may cause additional blocks to be allocated => populate new extent

29

More on Append

● Append always changes the file size
○ But does it always require new blocks?
○ Not always! If new data can fit within the current block no need to allocate more

blocks.
■ How many blocks are allocated for a file with length 100?
■ Do you need to allocate a new block for 10 more bytes?

● Must update the in memory inode and on disk inode upon an append!
○ How do you do this? (hint: review slide 20!)

30

Tips for writei

● Can simplify writei logic by separating block allocation from data write
○ First append file space if necessary:

■ compute total blocks needed to perform the write
■ new blocks needed = new total blocks - old total blocks
■ allocate new blocks, populate extent

○ Then write data assuming extents are already allocated!

● You’ll frequently want to get block number containing a file offset ⇒ We
recommend writing helper function for this:

○ can be used by both readi and writei
○ makes debugging easier

● But feel free to do whatever you want! It’s your design!

31

Tips for writei

32

● mkfs.c computes blocks needed given a file size by

 (feel free to do your own math, but just know that this math is correct)

● Make sure to update inode and dinode upon an append!

● Your writei should persist changes immediately (no fsync in xk)

● Hint: readi is a helpful example for how to interact with block cache

nblocks = dinode.size/BSIZE + (dinode.size % BSIZE == 0 ? 0 : 1);

File Creation

33

Moving on to File Creation

You should be able to create a new file when O_CREATE is passed to file_open

● Only create if file does not already exist

● What to do upon a create case:
○ Allocate a new disk inode
○ Update parent directory (root) with a new directory entry

34

Allocate a New Dinode

How do I allocate and populate a dinode?

● Find a free dinode in the inodetable
○ How to tell if a dinode is free?
○ Reuse old fields, set type or size = -1, or add a new field

■ If you change the default value of dinode field that needs to be updated in mkfs.c as well

● If no free dinodes, create a new dinode by appending to the inodetable
○ What function should you use to append to the inodetable?

● Write to the inodetable
○ Implement write_dinode (see read_dinode)

35

Add a New Directory Entry

● Update parent directory (root) with new directory entry
○ New dirent: new file name, dinode number
○ Use writei to write the direntry

■ if root dir has any invalid dirent, can reuse that entry for your new dirent
■ what's an invalid dirent? take a look at dirlookup…

● All files will be created under root dir, no nested directories for this lab

36

Quick Note on O_CREATE

When file_open gets called by the tests with the O_CREATE flag, it gets called
with O_CREATE | ANOTHER_FLAG.

How do we access both flags?

37

Quick Note on O_CREATE

When file_open gets called by the tests with the O_CREATE flag, it gets called
with O_CREATE | ANOTHER_FLAG.

How do we access both flags?

Use the & operator to extract each flag!

38

And Now Time for Delete

This is pretty much the reversed logic of create!

● unlink(path)
○ if path exists and no open references to the file, delete from the file system*

■ how do you count open reference?
● hint: all open inodes are in the inode cache!

■ effectively undoing steps from file creation
● frees the dinode so future creates can reuse the dinode
● update parent dir's data to invalidate the dir entry

○ otherwise, error

*unlink in Linux will delete the name from the file system, but keep the file object in memory until all references close
- not necessary for our purposes

39

https://linux.die.net/man/2/unlink

In-memory inode

40

inode cache

inum = 0,
ref = 0, valid

= 0,
garbage…

unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

initially, all entries of
icache.inodes are unused

*diagram skipped cached root dir inode for simplicity

In-memory inode

41

inode cache
unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

inum = 0,
ref = 0, valid

= 0,
garbage…

user program:
open(file, O_RDWR)

In-memory inode

42

inode cache

inum = 0,
ref = 0, valid

= 0,
garbage…

unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

In-memory inode

43

inode cache
unused
cache
entry

unused
cache
entry

NINODE
entries

struct inode

*diagram skipped cached root dir inode for simplicity

inum = 0,
ref = 0, valid

= 0,
garbage…

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

In-memory inode

44

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

*in this example, inode 10 is opened for the first time,
 if inode 10 is already cached, iget simply increments
existing entry's ref count and returns a pointer to it

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

In-memory inode

45

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

freshly allocated (valid ==0)
inode returned by iget
does not contain accurate
disk inode data yet (hence
garbage)!

*in this example, inode 10 is opened for the first time,
 if inode 10 is already cached, iget simply increments
existing entry's ref count and returns a pointer to it

In-memory inode

46

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

user program:
open(file, O_RDWR)

kernel/fs.c:
iopen(file)

kernel/fs.c:
namei(file)

*path traversal, finds inum 10 for file

kernel/fs.c:
iget(10)

*returns a pointer to the cached inode

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

 inode=namei(file)

kernel/fs.c:
locki(inode)

In-memory inode

47

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

In-memory inode

48

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

if inode is not valid
read in disk inode

kernel/fs.c:
read_dinode(10, …)

In-memory inode

49

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 0,
garbage…

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10

if inode is not valid
read in disk inode

In-memory inode

50

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 1,
dinode data

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10

use the result of read_dinode to
populate the in memory inode!

if inode is not valid
read in disk inode

In-memory inode

51

inode cache

NINODE
entries

*diagram skipped cached root dir inode for simplicity

allocated
entry

inum = 10,
ref = 1, valid

= 1,
dinode data

allocated
entry

struct inode

kernel/fs.c:
locki(inode)

kernel/fs.c:
read_dinode(10, …)

use the result of read_dinode to
populate the in memory inode!

kernel/fs.c:
readi(inodetable, …,

INODEOFF(10))
*uses bread to request the disk block

containing inode 10And now this inode is
ready to be used for fs
operations!

if inode is not valid
read in disk inode

That's it for Part A!

52

Supplemental Info

53

Prologue: Tour of the xk
Storage Layer

54

Initial Disk Layout

Initialization code for bootloader

Describe how disk is formatted
(layout type, region size, etc)

Track which disk blocks are used

Disk inodes, metadata for files

Where file data is stored

How things are currently
stored on disk!

mkfs.c (a POSIX
program, not an xk
program!)
writes the initial disk
image
following this layout

55

FS: Superblock

track metadata for the entire file system, persistent structure
tracks location for bitmap
tracks location for metadata table (inode array / inodetable)

56

FS: inodetable

- Special file for storing on metadata for file/directory
- data is an array of on disk inodes (dinode)
- data block starts at sb.inodestart (a block number)

- Where is the metadata for inodetable?
- it's the first dinode in inodetable data, inum = 0
- inodetable is special in that its metadata is stored within its data
- how do we find metadata (first data block)? superblock tells us where the data starts!

inodetable
inode

 . . .
dinode

for
inum 1

dinode
for

inum 0

dinode
for

inum 2

dinode
for

inum 3

dinode
for

inum 4

dinode
for

inum 5

57

dirent
“foo” 16

struct extent
struct extent

58

inode
table

In Memory Data

59

FS: icache

60

For ease & speed of access, we keep a cache of on disk structures in
memory. This includes a lock protecting accesses to the cache, an inode
cache for on disk inodes, and the cached inode for the inodetable itself.

icache.inodes array

61

 . . . NINODE
inode

entry 1
inode

entry 0
inode

entry 2
inode

entry 3
inode

entry 4
inode

entry 5

struct
inode

valid = 0

struct
inode

valid = 0

struct
inode

valid = 0

initially, no dinodes are cached, all entries' ref and valid field == 0

