
Lab 1: More Info

File syscalls

Administrivia

● Problem Set 1 out!

○ Due 10/9/24, 11:59pm

○ No submissions accepted after 2 grace day period

● Lab 1 due Wednesday, 10/9/24

○ No submissions accepted after 2 grace day period for lab questions

○ Submissions accepted with grade penalty after 2 grace day period for code only

2

Agenda

● Common Lab 1 Questions
○ Where/how to initialize global variables?
○ What are file tables?
○ What do “allocation” and “deallocation” mean?
○ What are reference counts for?
○ When should a new file info struct be allocated?

● System Calls

● File_* API Recap

3

Global Variables

4

Global Variables: Why?

“I heard on StackOverflow
global variables are bad, why
are we learning about them?”
~ You, a well-intentioned
student

5

Global Variables: Motivation

● Global variables are another tool in the toolkit.
● Very convenient for sharing across functions

and modules
● xk already makes extensive use of global

variables
● You will probably want to use global variables

in your designs

6

Global Variables: Challenges

● However, often there’s confusion on how global
variables are initialized.

● ⇒ Let’s remedy that

7

Global Variable Initialization in C

8

Global variables are
automatically
initialized to 0 at the
time of declaration!

What values will the
variables without
comments have?

// All variables below are allocated inside the data segment

// when the program is loaded into memory

int num1; // initialized to 0

int num2 = 4; // initialized to 4

// `static` means internal linkage, variable only visible

// within this translation unit (i.e.: this file).

static int num3; // initialized to 0

int arr1[10]; // Each entry is initialized to 0

static int arr2[10] = {1, 2, 3}; // {1, 2, 3, 0, 0...}

typedef struct Point {

 int x;

 int y;

} Point;

Point p = {1, 2}; // Initialized to x = 1, y = 2.

Global Variable Initialization in C

9

Global variables are
automatically
initialized to 0 at the
time of declaration!

What values will the
variables without
comments have?

// All variables below are allocated inside the data segment

// when the program is loaded into memory

int num1; // initialized to 0

int num2 = 4; // initialized to 4

// `static` means internal linkage, variable only visible

// within this translation unit (i.e.: this file).

static int num3; // initialized to 0

int arr1[10]; // Each entry is initialized to 0

static int arr2[10] = {1, 2, 3}; // {1, 2, 3, 0, 0...}

typedef struct Point {

 int x;

 int y;

} Point;

Point p = {1, 2}; // Initialized to x = 1, y = 2.

Refocusing on the labs

So you’re now an expert on C globals, but what does this have to
do with the labs again?

A: Your global file table will be a global variable!

10

File Tables

11

File Tables: Motivation

You create a handy struct file_info for tracking your file information.

…Where will these struct file_infos actually exist?

● stack?
● heap?
● data segment? (static/global data)

12

Suggested File Table Design

● The Lab 1 Spec hints at the intended file table design:
○ One “global file table”: a global array of struct file_info’s
○ A “process file table” per process: An array of pointers to entries in the

global file table

The next slide shows what that would look like.

13

Global File Table Diagram

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2G

lo
ba

l
Ar

ra
y File

Struct
Index 3

File
Struct
Index 4

File
Struct
Index 5

File
Struct
Index 6

Process 1’s File Descriptor Array

0 1 2 3 NOFILE - 1

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3 NOFILE - 1

st
ru

ct
 p

ro
c

fd = index into local File Descriptor Array

14

= In use = Available

File Tables: Why the indirection?

“Why have two layers of
tables? Why not just have the
per-process file tables store
struct file_infos directly?”

~You, an astute student.

15

File Tables: Indirection Motivation

● Having struct proc directly store table of struct file_infos causes problems
○ How would dup work?
○ Requires an indirection mapping fds to open files

● Once we introduce multiprocessing, multiple processes can reference the
same logical file

○ We’ll use this to implement inter-process communication with pipe
■ It’s how shells are often implemented

● So open files need to be available globally

16

File Tables: Where do they go?

So where/how is memory allocated for these tables?

For the global table, you can statically allocate a global array of file structs! (need
to support at least NFILE entries)

For the per-process tables: you can include the table as a field of struct proc
(need to support at least NOFILE entries)

17

Global File Table Notes

● Process file table entries point to elements (struct file_info) of global
open file table.

● The “file descriptor” (fd) is the index into the process file table.

18

Defining “Allocate” and
“Deallocate”

19

Motivation

● Earlier in the file table section we say some file table slots are “used” or
“unused”

○ Clearly we need to know so that we don’t trample other files’ metadata
○ … but how do we know if a file is in use?

20

Defining “allocation” and “deallocation”

“Allocation” means marking a resource as used. Examples:

● 333’s heap allocator. It marks chunks of memory as used using bitflags.
● The global file table, each struct file_info needs to be marked as

used/unused.
○ (hint: although it’s totally okay to add a “used” field, using an existing field in struct file_info

may also work for this purpose)

“Deallocation” just means marking a resource as unused (inverse of however its
done for allocation).

21

Allocation/Deallocation: Transitioning

But how do we actually know when we can allocate a resource? (i.e.: how do we
know it’s free?)

How can we know when we can deallocate it?

22

Reference Counting

23

Reference Counting Diagram

24

struct file_info {
 int offset;
 struct inode *inode;
 ...
}

fd 1

fd 2
fd 3

3 fds reference the
struct file_info

When is it safe to
deallocate the struct
file_info?

Reference Counting Notes

25

● Reference count is specific to each struct
○ Note that a file's ref count is different from an inode's refcount

● Everytime you store the pointer of a file struct somewhere, refcount
goes up
○ open, dup

● everytime you remove a reference to a file struct, refcount goes
down
○ close

The Simple Rule:
Just count the
number of direct
references.

26

Now let’s step through some examples.

27

Multiple Open Calls on Same File

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y

= In use

= Available

28

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 1

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 1
fd = open(“file.txt”, O_RDONLY)

= In use

= Available

29

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 1

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 1
fd = open(“file.txt”, O_RDONLY)
dup(fd) // what happens?

= In use

= Available

30

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 2

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 1
fd = open(“file.txt”, O_RDONLY)
dup(fd)

= In use

= Available

31

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 2

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 1
fd = open(“file.txt”, O_RDONLY)
dup(fd)
fd3 = open(“file.txt”, O_RDWR)
// what happens?

= In use

= Available

32

File
Struct
Index 1

refcount 1

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 2

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 2
fd = open(“file.txt”, O_RDONLY)
dup(fd)
fd3 = open(“file.txt”, O_RDWR)

= In use

= Available

33

File
Struct
Index 1

refcount 1

Multiple Open Calls on Same File

File
Struct
Index 0

refcount 2

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

refcount 2
fd = open(“file.txt”, O_RDONLY)
dup(fd)
fd3 = open(“file.txt”, O_RDWR)

● Each open call allocates a
new file_info struct

● Name lookup returns
same inode

● Don’t worry about
managing inode refcount
for this lab! 34

Console

35

Console Input/Output

● The console is a special file called “console”!
○ Special file marked as a device

■ Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.
● Code to support devices is already handled for you

○ Its information is already provided when you fetch the device file from inode layer.

● I thought stdin/stdout/stderr were always available?
○ Recall that fork() copies the file descriptor table and there’s always an init process. The init

process is actually what opens the console device file, and every process inherits from init,
which is why stdin/stdout/stderr are available on non-init processes.

36

System calls

37

System Calls

In lab 1, we need to add support for the following syscalls:
● sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat

What are the main goals of sys functions?
● Argument parsing and validation (never trust the user!)

○ E.g. resolve FD -> file_info*
● Call associated file functions

38

Argument Parsing & Validation

First we need to parse and validate the arguments passed in via syscall

What do we mean by “parsing” and “validating”?

39

What does this look like in xk?

40

Parsing & Validation Helper Functions

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
● int argint(int n, int *ip): Gets an int argument
● int argint64_t(int n, int64_t *ip): Gets a int64_t argument
● int argptr(int n, char **pp, int size): Gets an array of size. Needs size to

check array is within the bounds of the user's address space
● int argstr(int n, char **pp): Tries to read a null terminated string.

You should implement and then use:
● int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid

file descriptor (in the open file table for the process).
41

File API Recap

42

fileopen

Finds an available file struct in the global file table to give to the process
Hint: to obtain the inode for the desired file, take a look at iopen()

File
Struct
Index 0

File
Struct
Index 1G

lo
ba

l
Ar

ra
y

0 1 2 3

st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

after open

43

= In use

= Available

fileclose

Release the file from this process, will have to clean up if this is the last reference
● make sure to irelease() the inode before deallocating the file struct

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y

after close

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

44

filedup

Duplicates the file descriptor in the process’ file descriptor table

File
Struct
Index 0

File
Struct
Index 1G
lo

ba
l

Ar
ra

y

0 1 2 3st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3st
ru

ct
 p

ro
c

after dup

45

filewrite and fileread

● Writing or reading of a "file"
○ Note that file is in quotes. Many things on Unix-like systems are treated as a file.

A “file” can be a real file on disk, or a console, or a pipe (lab 2)!

● Check out the functions concurrent_readi and concurrent_writei defined in
kernel/fs.c

46

filestat

● Return statistics to the user about a file
● Check out the function concurrent_stati in kernel/fs.c

Useful for testing
● For example, you can use it to find the size of a file
● We use it extensively to test your implementation :)

47

Questions?

48

Lecture Questions

49

Question topics?

● Mode transfer mechanism
● Process abstraction
● Program becoming a process
● Time sharing in a CPU (scheduling)
● Process life cycle
● Fork
● Exec
● Copy on Write Fork
● Signals
● Pipes

50

Memory
Relevant for Lab 2

51

Memory: Kernel and User mode

- Read lab/memory.md (useful for lab 3, but also to understand some parts of
lab 2)

- Each process has its own page tables that translate virtual addresses to
physical addresses

52

Virtual
memory for a
process

The kernel is
mapped to the
top for every
process:

Why? Are there
any risks?

53

Kernel stack

- AKA “interrupt stack”
- Each process has its own kernel stack
- In the kernel section of memory
- In xk, the kernel allocates one page which acts as the kernel stack during

process creation
- From kernel.proc.c:allocproc:

54

Interrupts, exceptions, syscall (review)

- Interrupts: triggered by hardware events (I/O), unrelated to the current instr
- Ex: timer interrupt, keyboard input, disk I/O completion

- Exceptions: error caused by the current instr
- Ex: divide by zero, segfault, pagefault

- Syscall: user requesting a service from the kernel
- Ex: open(), close(), read()

All 3 involve a mode switch into the kernel!

55

Trap Frame

When an interrupt/exception/sys call occurs,

There is mode switch from User -> Kernel

 However, we need to eventually move back to user space eventually

The kernel has a different $rsp, $rip and would change registers during execution

Trap frame stores all the registers into a struct so that it can be later restored
when switching to user mode

56

Accessing Global Variables Across Files

“Great so I can create
an initialize them, but
how do I access
file1.c:foo from
file2.c?”
~ You, a student with
excellent questions

57

Accessing Global Variables Across Files: A Brief Aside

Common to want to access variable foo defined in file2.c in
file1.c.

Google is your friend for C questions: StackOverflow Answer
To recap:

/// file2.c

// This is it. Defines the variable foo

// in the current translation unit.

int foo;

// Now `foo` can be freely used in this

file.

/// file1.c

// Note that this line also could just be in

// a header file which is included instead.

extern int foo;

// Now `foo` can be freely used in this file.

58

https://stackoverflow.com/questions/1433204/how-do-i-use-extern-to-share-variables-between-source-files

Reference Counting: Why do you care?

● Consider a process which opens then closes a file one million times in a
loop.

● Do you expect the file table to be exhausted? ⇒ No! Of course not
● This implies that file table slots must be reclaimed (i.e.: deallocated).
● On the other hand, slots must NOT be reclaimed before they’re done

being used.

The solution? Reference counting.

59

Lab 1 Test Program Code Fragment

● What’s going on here?

● We mention the file system
is read only…

○ Why can we write to stdout?

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr

60

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr
File

Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y

= In use

= Available

61

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

● Resolve inode for
“console”

● Find next unused slot
in global array,
allocate for inode

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr

62

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

● Find next open slot in
local FD array

● Return FD to user

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr

63

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

● Find next open slot in local
FD array

● Duplicate reference from
user’s given FD

● Return new FD to user

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr

64

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

int main() {

 // printf(stdout, “hello world\n”);

 // while (1);

 if (open(“console”, O_RDWR) < 0) {

 error(“fail”);

 }

 dup(0); // stdout

 dup(0); // stderr

65

