
Lab 2

Part 2
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Admin

● Lab 2 out!
○ Design Doc due 10/21/24 @11:59pm
○ Lab Code + Questions due 10/28/24 @11:59pm

● You will write design docs starting with lab 2
○ The better you fill it out, the more helpful we can be with our feedback!
○ Graded on effort basis, NOT correctness (although correctness would be nice)
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Agenda

● Monitors Overview
● Lab 2 - Pipe
● Lab 2 - Exec
● Setting up the Stack exercises
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Monitors
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What the heck is a monitor?

● A monitor is made up of a lock and at least one condition variable

Why do we use monitors? 
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What the heck is a monitor?

● A monitor is made up of a lock and at least one condition variable

Why do we use monitors? 

● Similar to locks but…
○ Allow processes to wait for certain conditions to become true while “holding lock” (waiter 

atomically releases the lock and reacquires the lock on wakeup).
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Monitors in xk

● Lock
○ xk condition variable API only supports spinlock (an impl. choice)

● Condition
○ the shared data that threads are synchronizing on

○ E.g. for wait/exit this would be child's state

● Condition Variable
○ the waiter list is tracked by the process table

○ proc in SLEEPING state with the same chan are part of the same CV

○ chan is a pointer, can be anything (think of it as a cv identifier)
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“Condition variable? I 
saw no mention of 
those in the provided 
code.” ~ You, a free 
thinker.
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No Condition Variables in xk

The starter code does not provide the object-oriented std::condition_variable API 
you can find in C++: LINK

Instead it provides the sleep and wakeup helper functions (which together can 
implement the monitor pattern)

● sleep ~= wait
● wakeup ~= broadcast
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https://en.cppreference.com/w/cpp/thread/condition_variable


Sleep

● sleep(void* chan,  struct spinlock* lk)
○ atomically release your current lock and grabs the process table (ptable) lock

■ if your current lock is the ptable lock do nothing
■ why might your current lock be the ptable lock?

○ sets myproc()->state to SLEEPING
○ sets myproc()->chan to whatever channel we are waiting on
○ yields so that scheduler can run another process
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Wakeup
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● wakeup(void* chan)
○ acquires the process table lock
○ looks for all SLEEPING processes with the given channel (chan)

■ sets each proc->state to RUNNABLE (ready)
■ proc->chan is also cleared to NULL



Monitors in xk

● You will use monitors to implement wait(), exit(), and pipe() for lab2!

wait(), exit()

● Coordinating children and parent processes

pipe()

● Coordinating reader and writer processes
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Lab 2 - Pipe
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What is a Pipe? 

A pipe is essentially a queue of bytes with two ends:

● One end designated for input, the other for output

When you type ‘ls | wc’ into the shell, you are using a pipe!!!

● ‘ls’ lists the directory contents
● ‘wc’ counts the number of lines output from the ls command
● The pipe joins the output from ‘ls’ to the input of ‘wc’
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● Creates a pipe (kernel buffer) that can be read from/written to.

● From the user perspective: returns two new file descriptors
○ fds[0] = “read end”, O_RDONLY
○ fds[1] = “write end”, O_WRONLY

● Pipes allow processes to communicate with each other
○ Parent opens a pipe, forks a child (now they both have access to the pipe ends)
○ Typically each process only leaves one end open (closes the read end or the 

write end)

pipe(fds)
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An Example to Illustrate Pipes

Now let’s go through a demonstration of what happens as a 
sample user uses the pipe API (in the context of 
multiprocessing)!
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Pipe usage

● Process 1 starts with no open files
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Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c



Pipe usage

● Process 1 calls pipe()
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Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

read 
end

write 
end



Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

read 
end

write 
end

File Struct
(Read only)

File Struct
(Write only)

PipeWhat will the newly allocated 
pipe fds point to? 
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Pipe usage

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c
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read 
end

Process 2’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

● Process 1 calls fork(), fd table is duplicated

write 
end

read 
end

write 
end

○ Note: fork() is called 
by user and should 
not be called within 
the actual pipe() call



Pipe usage

● Process 1 close(1), process 2 close(0)
● The process with the write end open is a writer, and the one with the 

read end open is a reader

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3

st
ru

ct
 p

ro
c

PROC_MAX_FILE

Abstraction of a pipe 
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write 
end

read 
end



pipe FAQs

● When should pipe be allocated?
○ dynamically! when pipe() is called!

● How does xk do dynamic memory allocation? 
○ hint: kstack is also dynamically allocated
○ `kalloc` allocates a page (4096 bytes) of  memory from the kernel heap

■ wait, but how do I put a pipe onto the page?
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struct pipe* p = kalloc();

p->buffer = ???

should be right past the struct, 
and what would that be?
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a page of memory 
(4096 bytes)

struct pipe { 
metadata…
char* buffer;

}

actual buffer



pipe FAQs

● When can you free the pipe and its buffer?
○ remember there may be multiple references to read end and write end

● Can we always write to or read from the buffer? (Hint: bounded buffer sync)
○ What if there's no room to write, or no data to read?
○ What happens if all read/write ends are closed?

● How will pipes integrate with the file syscalls?
○ Need a way to determine if a struct file is an inode or a pipe
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Interaction with File API

Pipes are accessed through file descriptors.

This means you need to think through how the lab 1 syscalls will 
work when called on pipe file descriptors:

● read
● write
● stat

● close
● dup
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What should pipe contain?

● What metadata/information do you need for pipe?
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What should pipe contain?

● What metadata/information do you need for pipe?
○ Read offset
○ Write offset
○ # of bytes available in the buffer
○ Whether the read end is still open
○ Whether the write end is still open
○ Lock and condition variables 
○ A way to track the active writer [ why? ]

● Similar to the bounded buffer problem
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And that’s pipe!

… But wait! There’s 
more! (that you have 
to do in lab 2 part 2)
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But wait! …. There’s more! (in lab 2 part 2)

In lab 2 part 2 you are also implementing exec 
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Lab 2 - exec
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Motivation

Why do we have exec?

● To let user code execute user programs!
○ E.g. Shell commands like ‘ls’ and ‘cat’ commands are 

exec’ed by the ‘sh’ program.
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exec(program, args)

● Fully replaces the current program; it does not create a new 
process

● How do we replace the current program?
○ need to set up a new virtual address space and new registers 

states
○ and then switch to using the new VAS and register states
○ file descriptors and pid remain the same
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exec(path, argv) arguments validation

33

string0 0string5string4string3string2string1

must be validated for an 8 byte 
pointer before we can access 
argv[0] and validate string0

argv / &argv[0]



exec(path, argv) arguments validation
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must be validated for an 8 byte 
pointer before we can access 
argv[1] and validate string1

&argv[1]

string0 0string5string4string3string2string1



exec(path, argv) arguments validation
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must be validated for an 8 byte 
pointer before we can access 
argv[2] and validate string2

&argv[2] repeat this process until 
● a NULL entry is reached
● a validation error

string0 0string5string4string3string2string1



exec(program, args)

● Setting up a new virtual address space (pseudocode)
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to allocate stack vregion

■ you still need to populate user stack with arguments
■ vspacewritetova to write data into the stack of the new VAS

○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right! 
○ To swap: Assign the new vspace to current vspace
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How are the args set 
up in exec?
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Another look at main()

exec sets up the function arguments for main!

int main(int argc, char** argv)

● argc: The number of elements in argv
● argv: An array of strings representing program arguments

- First is always the name of the program
- Argv[argc] = 0
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Setting up the Stack 
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Quick Review: X86_64 Calling Conventions

From 351:

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)
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Quick Review: X86_64 Calling Conventions

From 351:

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the 

register contains a pointer to the array’s beginning

41



Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[ … ]
argv[argc - 1]
argv[argc] = NULL 

Arg #0 string
Arg #1 string

[ … ]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array 
of pointers, %RSI 
points to an array on 
the stack

● Since each element of 
argv is a char*, each 
element points to a 
string elsewhere on 
the stack

● Why? Alignment
● Why NULL pointer? 

Convention

SZ_2G
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\0… (padding)



Let’s Practice!
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Practice Exercise 1

%RDI

%RSI

%RSP

// High addresses Now it’s your turn!

Draw stack layout 
and determine 
register values for 
exec() called with:

“cat cat.txt”

44
Stack grows down



%RDI

%RSI

%RSP

// High addresses

// Stack grows
// down

45

Practice Exercise 1:  “cat cat.txt” Solution
stackptr



%RDI

%RSI

%RSP

“cat.txt”
// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr



%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr



2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2



\0\0\0\0

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2



\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2



addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2



addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

%RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2



addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

● RSI holds argv: the beginning 
of the argv array



Return PC

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

stackptr

● RDI holds argc, which is 2

● RSI holds argv: the beginning 
of the argv array

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)



Return PC

addr of "cat" (argv[0])

addr of "cat.txt" (argv[1])

\0\0\0\0
NULL (argv[2])

2%RDI

argv %RSI

stackptr%RSP

“cat”
“cat.txt”

// High addresses

// Stack grows
// down
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Practice Exercise 1:  “cat cat.txt” Solution

● RDI holds argc, which is 2

● RSI holds argv: the beginning 
of the argv array

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)

● RSP is properly set to the 
bottom of the stack.



Practice Exercise 2

%RDI

%RSI

%RSP

// High addresses Now it’s your turn!

Draw stack layout 
and determine 
register values for 
exec() called with:

“kill -9 500”

56
Stack grows down



3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the 

beginning of the argv 
array

● RSP is properly set to the 
bottom of the stack.

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)

Return PC
argv[0]
argv[1]
argv[2]

argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down
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Practice Exercise 2: “kill -9 500” Solution

\0\0\0\0



Questions?

58



2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
Argv[1] 

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which is 2
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Practice Exercise 1: Solution

\0\0\0\0
Argv[2] = NULL

● RSI holds argv: the beginning 
of the argv array

● RSP is properly set to the 
bottom of the stack.

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)



Debugging Tips: Record & Replay

Starting with lab2, there are multiple processes, meaning more concurrent 
accesses to the kernel code, which might make bugs harder to reproduce.

make qemu-record

record all external events to a log file

 helpful if you can record the race condition

make qemu-gdb-replay    (pair with make gdb)

replay according to the log file, but with gdb (similar to make qemu-gdb)
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Monitor Pattern Example

Process 1
Status: running

Process 2
Status: runnable

Process 1 needs to wait for some condition which depends on process 2.
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Monitor Pattern Example

Process 1
Status: asleep

on condvar

Process 2
Status: running

Process 1 goes to sleep on some channel related to this condition (doesn’t 
matter what chan is, as long as both processes agree). At some point, 
Process 2 gets scheduled to run. 62



Monitor Pattern Example

Process 1
Status: asleep

on condvar

Process 2
Status: running

When process 2 finishes its task, it wakes up all processes sleeping on the 
appropriate channel.

Wake up all 
processes 

sleeping on 
condvar!

Process 2 did work 
that Process 1 was 

waiting for
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Monitor Pattern Example

Process 1
Status: runnable

Process 2
Status: runnable

Process 1 is set to runnable because of the wake up call.
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Monitor Pattern Example

Process 1
Status: running

Process 2
Status: runnable

Process 1 is eventually scheduled to run and can continue its work.
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Monitor Pattern Example

When the process wakes up, it should check the 
condition and go back to sleep if it’s false.

Why?
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Monitor Pattern Example 2

Process 1
Status: sleeping

on condvar Process 2
Status: running

Now, there are 2 processes sleeping on the same channel.

Process 3
Status: sleeping

on condvar
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Monitor Pattern Example 2

Process 1
Status: sleeping

on condvar Process 2
Status: running

Process 2 wakes up all processes sleeping on the channel.

Process 3
Status: sleeping

on condvar

Wake up all 
processes 

sleeping on 
condvar!
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Monitor Pattern Example 2

Process 1
Status: running

Process 2
Status: runnable

Both processes are woken up, and the scheduler decides to run Process 1.

Process 3
Status: runnable
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Monitor Pattern Example 2

Process 1
Status: running

Process 2
Status: runnable

What if Process 1 does something that causes the condition to become 
false again?

Process 3
Status: runnable
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