
Lab 4 Intro

1

Quick notes

2

● Lab3 due tomorrow 2/17
● Lab4 design doc due Monday 2/27

Think Back To Lab 1...

● Files were read-only
○ open denies O_WRONLY and O_RDWR flag for files

3

But For Lab4

Lab 4: Two parts

1) Make the filesystem writable
a) remove file write restriction (no need to check T_DEV, will fail lab1test and that's fine)
b) support file overwrite (write to existing blocks, implement writei)
c) change the inode layout to support file extension
d) support file creation and deletion (allocate/free inode, adjust data in root directory)

2) Make the filesystem crash-safe
a) implement some form of logging

4

This will cause you to fail lab 1
tests! Make sure to submit lab 1 on
Gradescope before starting lab 4

Prologue: Tour of the xk
Storage Layer

5

Major Layers

● File System, Files, and Directories (fs.h/fs.c, file.h/file.c, extent.h)
○ inodes: struct dinode (disk inode, persistent), struct inode (in memory copy of the inode)
○ inode file: special file where the file data is a list of disk inodes
○ extents: how inode tracks its data location
○ bitmap: used to keep track of free and used blocks on disk

● Block Cache/Buffer Cache (bio.c)
○ brings block/sector into memory and manages them (evict, writeback)
○ struct buf: metadata for managing buffer, buf->data = sector data
○ APIs: bread (brings in the sector into memory, locks the buffer, no one else can access the

block), bwrite (marks the buffer dirty), brelse (releases the buffer)
● IDE Connector (ide.c)

○ block interface, no need to modify it, can read if curious

6

7

FS: Superblock (inc/fs.h)

xk’s file system superblock, track metadata for the file system
much simpler than what a “real” filesystem like FFS or NTFS would need

8

FS: dinode (inc/fs.h)

Disk inode
- metadata for files/directories
- persistent, lives on disk, cannot have any pointer fields (why?)
- defines data layout, currently only supports 1 extent

- should be modified to support multiple extents (can cap at 30)
- sizeof(struct dinode) must be a power of 2 (currently 64), why?

9

FS: dinode (inc/fs.h)

- dinodes are stored in the inodefile
- reuse dinodes if existing ones are free
- can create more disk inode by appending to the inodefile

- How do you know a dinode is free?
- Up to you to decide:

- reuse old fields: type = -1
- create a new flag in dinode: probably need to pad the struct anyway

- make sure you mark it as unused when deleting the file in the same way

10

FS: inodefile

- Special file for storing dinodes
- data is an array of dinodes

- Starts at sb.inodestart
- Where is the dinode for inodefile?

- it's the first dinode in inodefile's data, inum = 0

inodefile data

 . . .
dinode

for
inum 1

dinode
for

inum 0

dinode
for

inum 2

dinode
for

inum 3

dinode
for

inum 4

dinode
for

inum 5

11

FS: inode

In memory inode
- a cache copy of the disk inode & in memory bookkeeping

- lock, refcount, valid (matters while running but not persistent)
- if you change your dinode, make sure to change inode as well

- locki will synchronize the inode with dinode when inode->valid == 0

cached
from
dinode

12

FS: inode

- Allocated when we need information from a disk inode
- read disk inode read through read_dinode and cache info into the inode struct
- in memory inodes live in icache.inode

- Changes to an inode are purely in memory
- changes will not reflect on the cached dinode unless you issue a write to the dinode with

updated information

13

FS: extent

- A way to track where data is stored
- For xk, we consider each file a contiguous region of blocks
- Note, this is unlike FFS with indirect pages and references to individual blocks

- Every extent tracks a contiguous chunk of sectors
- startblkno: sector number of the beginning sector
- nblocks: number of sectors
- tracks sectors [startblkno, startblkno + nblocks)

- Multiple extents track multiple chunks of sectors
14

FS: bitmap (kernel/fs.c)

Bitmap sectors live on disk and track the usage information of all disk sectors

- sectors start at sb.bmapstart, all the way up to (not including) sb.inodestart
- If bit in sector is 0, the corresponding block is free
- If bit in sector is 1, the corresponding block is in use

- Existing xk API helps manage the bitmap for you

15

FS: bitmap (kernel/fs.c)

- balloc()
- Allocates consecutive blocks for a given device
- Panics when not enough consecutive blocks available
- Does not guarantee that block contents have been zeroed

- bfree()
- Frees consecutive blocks for a device
- Will not free contiguous blocks belonging to different bitmap sectors

- bmark()
- Used to mark bits of bitmap to represent free and used blocks

WARNING: these functions do not change the bitmap on disk. You will need to update
them to do so.

16

FS: directories

- Directories are like ordinary files (they have an inode associated with)
- Data is an array of directory entries (dirents)
- Dirent has two fields, name and inum

17

Initial Disk Layout

Initialization code for bootloader

Describe how disk is formatted
(layout type, region size, etc)

Track which disk blocks are used

Disk inodes, metadata for files

Where file data is stored

How things are stored on disk

mkfs.c (not an xk program)
writes the initial disk image
following this layout

18

dirent
“foo” 16

struct extent
struct extent

19

Part A: Writable FileSys

20

Write

● Modify writei in kernel/fs.c so that inodes can be used to write back to disk
● Use bget, bwrite, brelse

○ Note that you can’t read/write with the disk in quantities smaller than a block
● Look at readi as your example
● Also modify file_open to allow writing (and patch lab1 tests if you want to)

21

Append

● If you write at the end of a file, its size should grow
○ Update the dinode with new size

● Somehow you’ll need extra space to write into
○ You can use the bitmap to find free blocks
○ Update dinode to allow for multiple extents (can cap at 30)

22

Create

Be able to create a new file when O_CREATE is passed to file_open

Multiple parts!

1. Create a new dinode by appending to inodefile
2. Update root directory to reference this new dinode (nested dirs not required)

○ directory is just a special file that contains a list of struct dirent
3. If needed, update bitmap to reflect the newly allocated dinode

23

Delete

● unlink(char* path) system call
○ If path exists and no open references to the file, delete from the file system*

■ Effectively undoing steps from file creation
○ Otherwise, error

● Supporting file deletion -> inodefile can be fragmented
○ You will need to ensure file creation can fill holes in the inodefile

● Update parent directory's dirents to reflect the deletion

*unlink in Linux will delete the name from the file system, but keep the file object in memory until all references close
- not necessary for our purposes

24

https://linux.die.net/man/2/unlink

Lab4test_a should now pass

25

Lab4test_b
should also pass if your file
concurrency is good

26

Part C: Crash Safety

27

Suppose we try to append...

Simple example: say we have “file.txt” which is 512 bytes long.
We try to append 50 bytes to this file.

We need multiple block writes
1) The dinode of the file, updating the size of this file to 562 bytes
2) The added file data on disk (a new sector for the new 50 bytes)
2) The bitmap sector to reflect the newly allocated sector

28

But this entire operation is not atomic

- Invoke file_write
- Compute new file size
- Update size on disk (dinode)
- Update file contents in memory
- Write the new file contents to disk CRASH

When we reboot the system… We think “file.txt” is 562 bytes long, but the last 50
bytes are garbage, not what we tried to write!

29

The goal: make multi-block operations atomic

How?
Journaling.

The big idea: write changed blocks into a log rather than the final slot on disk.
Once all blocks are written to the log, copy them into the actual destination.

● If the system crashes before all blocks written, trash the log - fs consistent!
● If the system crashes after all blocks in log, redo the copying - fs consistent!

30

The protocol, in more detail

For any operation which must write multiple disk blocks atomically…

1) Clear out any data currently in the log
2) Write new blocks into the log, rather than target place. Track what target is.
3) Once all blocks are in the log, mark the log as “committed”
4) Copy data from the log to where they should be

On system boot, check the log. If not committed, do nothing. If so, redo the copy
(copy is idempotent)

31

Log API

● The spec recommends designing an API for yourself for log operations:
○ log_begin_tx(): (optional) begin the process of a transaction
○ log_write(): wrapper function around normal block writes
○ log_commit_tx(): complete a transaction and write out the commit block
○ log_recover(): log playback when the system reboots and needs to check the log for disk

consistency
■ Where/when should this be called? (Hint: inspect kernel/fs.c)

32

Practical Example

33

The Log

Step 1: “log_begin()”

The Disk
(Main Storage)

Make sure the log is cleared

34

The Log

Step 2: “bwrite(data block 1)”

Data
Block 1

The Disk
(Main Storage)

Write into the log, rather than the place in the
inode/extents region we want it to go

35

The Log

Step 3: “bwrite(data block 2)”

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Write into the log, rather than the place in the
inode/extents region we want it to go

36

The Log

Step 4: “log_commit()” [1]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Mark the log as “committed”

37

The Log

Step 5: “log_commit()” [2]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

Copy the first block from log onto disk

38

The Log

Step 6: “log_commit()” [3]

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

Copy the second block from log onto disk

Data
Block 2

39

The Log

Done!

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

We have both data blocks 1 and 2 on disk -
everything was successful.

For efficiency, we can zero out the commit
flag so the system doesn’t try to redo this

Data
Block 2

40

The Log

Example: Step 3: “bwrite(data block 2) CRASH

Data
Block 1

The Disk
(Main Storage)

On reboot…
There’s no commit in the log, so we should
not copy anything to the disk

41

The Log

Example: Step 6: “log_commit()” [3] CRASH

Data
Block 1

Data
Block 2

Commit
Flag

The Disk
(Main Storage)

Data
Block 1

On reboot, we see that there is a commit flag

We can then copy block 1 and 2 to disk --
even though DB1 was already copied over,
overwriting it with the same data is fine

Data
Block 2

42

Where to Log?

It’s just blocks on disk, so you can put it anywhere you want (within reason)

After-bitmap, before-inodes is a pretty good place
You’ll need to update the superblock struct and mkfs.c (mkfs.c initializes the

disk during the compiling process)

43

Any questions?

44

