
Lab 2

Multiprocessing

Admin

● Lab 2 design due 1/23 (next Monday, no late days!)
○ so we can give you timely feedback

● Lab 2 due 2/3 (~two weeks from now)
○ you need all the time

● Lab 2 has a design doc. The better you fill it out, the more helpful we can be
in commenting on it, and the more prepared you will be for writing the code!

○ Submit on Gradescope, but also put design doc under repo/lab, similar to lab1design
○ Grading expects how details, not just what -- more than just copying from spec

2

Design Document

● Do it BEFORE you write code
○ This is mainly for you to think carefully before implementing the spec

Include whatever design choices that will help you succeed

● Knowing what to include is difficult
○ You’ll learn as the quarter goes
○ Use designdoc & lab1design as a reference of what should be included!
○ Edge cases, unanswered questions

Office hours are a good time to talk about design

3

Locks
Question: Why do we need them?

4

Spinlocks

● Busy waits until lock can be acquired
○ acquire(): while (can't acquire lock) { ; }

■ xchg(lock_status, 1) == 1 ⇒ can't acquire the lock
■ xchg ≈ test&set, lets you atomically exchange any value and returns the old value

○ release(): marks lock as free by setting lock_status to 0

● Relevant files
○ inc/spinlock.h
○ kernel/spinlock.c

● Pros/Cons of spinlocks?
○ Fast to acquire resource once it’s freed up
○ Wastes CPU while waiting, worse with more waiting threads

5

Condition Variables

Waiting queue

● Set of threads/processes waiting on the condition variable
● In xk, processes wait on an 64-bit value called “chan”

Sleep (Wait) (in Java: wait)

● Release an external lock and atomically move to the SLEEPING/BLOCKED state until
notified/signaled by another thread

● When sleep returns, lock is reacquired atomically (why?)

Wakeup (Signal/Broadcast) (in Java: notify/notifyAll)

● Signal: wake a single waiter (no guarantee about which one)
● Broadcast (wakeup in xk): wake all waiters (no guarantee on which waiter proceeds)

6

Sleep, Wakeup, and Chan (implements Condition
Variable)

● sleep/wakeup
○ main API for synchronization in xk
○ how do we know what a process is sleeping on or waking up for?
○ chan: just a pointer, can be anything

■ in sleeplock's case this would be the address of the lock

● sleep(void* chan, struct spinlock* lk)
○ sets myproc()->state to SLEEPING
○ sets myproc()->chan to whatever channel we are waiting on
○ atomically release your current lock and grabs the process table lock
○ yields so that scheduler can run another process

7

Sleep, Wakeup, and Chan

8

● wakeup(void* chan)
○ acquires the process table lock
○ looks for all SLEEPING processes with the given channel (chan)

■ sets each proc->state to RUNNABLE (ready)
■ proc->chan is also cleared to NULL

● Relevant files:
○ inc/proc.h
○ kernel/proc.c

Linux: keeps a linked list of threads waiting on a chan (more efficient)

Monitors in xk

● Monitor: main synchronization primitive to coordinate processes
○ implemented using lock, sleep, wakeup, and chan that we just saw
○ a lock + state variables + condition variables

■ in xk, the lock must be a spinlock (an impl. choice)

● State variables
○ variables that track the current state of things, often use to check condition
○ while (state_var1 == 0 && state_var2 == false)

● Condition variables
○ manage waiters for a condition

■ all procs with the same chan are waiters for that condition
○ in xk, CVs = chan + sleep + wakeup

9

Monitors in xk

● You will use monitors
to implement wait(),
exit(), pipe() for lab2

● sleep in synch.c is not
the sleep system call

sleep = wait
wakeup = broadcast

no equivalent in xk = signal

10

Sleeplocks (implements Monitor)

● Sleeps until lock can be acquired
○ acquire(): while (lock is busy) { sleep() }
○ release(): set lock as free, wakeup() ALL sleeping threads for this lock

■ It's a competition! Only 1 thread gets the lock, the rest goes back to sleep

● Relevant Files
○ inc/sleeplock.h
○ kernel/sleeplock.c

● Pros/Cons?
○ Doesn’t waste CPU time waiting for slow operations (e.g. IO)
○ Process gets descheduled, incurring overhead

11

Lab 2 - Synchronization

12

Synchronization

● Lab1: initial kernel thread + user init process
○ only one process to make system calls
○ no need for synchronization for any global data used by syscalls

● Lab2: support fork = multiprocessing
○ need to revisit previous syscalls and protect global variables accessed
○ what might those be?

13

Lab Advice: Spinlocks vs. Blocking Locks

Use spinlock for

Protecting scheduler data structures (can’t go to sleep if scheduler is busy)

Very short, deterministic critical sections (be careful to avoid deadlock)

Any shared data structure used by interrupt handler (real time responsiveness)

Blocking locks

Everything else

In some places, xk disables interrupts (eg, before acquiring a spinlock). This
prevents just this core from taking an interrupt (eg, taking a time slice). Other cores
can still execute, take interrupts, etc.

14

Lab 2 - Processes

15

fork()

● Create a new process by duplicating the calling process, returns twice!
○ 0 in the child (newly created) process
○ Child’s PID in the parent

● What does this entail? What needs to be created, and how do we copy
parent state?
○ Create an entry in the process table (allocproc)
○ Clone all open resources

■ Files (make sure to increase reference count)
■ All memory (look into vspaceinit and vspacecopy to copy virtual memory space)
■ Return execution flow to the correct place with the correct context (trap frame)
■ Anything else?

16

wait()/exit()

● exit(): Halts program and sets state to have its resources reclaimed
○ should clean up as much resources as possible (eg. close all open files)
○ let your parent know you've exited (how?)

● wait(): Sleep until a child process terminates, then return that child’s PID.
○ can only wait for child
○ need to reclaim child's kernel resources

■ child's PCB, page tables, kernel stack (why can't these be freed by the child?)
○ process shouldn’t return from here until a child has exited
○ process shouldn't block if any child already exited

17

wait()/exit()

● Parent cleans up child's data on wait(), but parent may not ever call wait
○ Who should clean up the child then?
○ Keep in mind when you implement exit, you can be both a parent and a child!

● Almost all of lab2 tests rely on wait and exit, so you won't pass any tests until wait
and exit are implemented

18

Lab 2 - Pipe

19

pipe(fds)

● Creates a pipe (kernel buffer) for process to read and write

● From the user perspective: returns two new file descriptors
○ fds[0] = “read end”, not writable
○ fds[1] = “write end”, is not readable

● You’ll want to make this compatible with existing file syscall interface

● Pipe allows processes to communicate with each other
○ parent opens a pipe, forks a child, and now they both have access to the pipe ends
○ typically one process only leaves one end open (closes the read end or the write end)

20

Pipes

● A mechanism for process communication
● By calling sys_pipe, a process sets up a writing and reading end to a

“holding area” where data can be passed between processes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

21

read
end

write
end

Pipes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

22

read
end

Process 2’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

● Process 1 calls fork(), fd table is duplicated

write
end

same pipe!
read
end

write
end

Pipes

● Process 1 close(1), process 2 close(0)
● And now we have a pipe across processes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3

st
ru

ct
 p

ro
c

PROC_MAX_FILE

Abstraction of a pipe

23

write
end

read
end

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File Struct
(Read only)

File Struct
(Write only)

PipeImplementation of a pipe

24

Pipes

● Where should pipe be allocated?
○ pipes should be allocated at runtime, as requested
○ how does xk do dynamic memory allocation?

■ (hint: kstack is also dynamically allocated)

● When can you free the pipe and its buffer?
○ remember there may be multiple read ends and write ends

● Can we always write to or read from the buffer? (Hint: bounded buffer sync)
○ What if there's no room to write, or no data to read?
○ What happens if all read/write ends are closed?

● Pipe operations go through file syscall
○ Need a way to determine if a struct file is an inode or a pipe

25

exec(progname, args)

● Fully replaces the current process; it does not create a new one

● How to replace the current process?
○ need to set up a new virtual address space and new registers states
○ and then switch to using the new VAS and register states
○ file descriptors and pid remain the same

26

exec(progname, args)

● Setting up a new virtual address space
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to allocate stack vregion

■ you still need to populate user stack with arguments
■ vspacewritetova to write data into the stack of the new VAS

○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right!
○ Look at what vspacefree does

27

Questions?

28

Misc.

29

Process States

UNUSED EMBRYO RUNNABLE

RUNNING

ZOMBIE

SLEEPING

30

exec(progname, args)

● This fully replaces the current process; it does not create a new one
○ Often used with fork. Fork off a child as a new process; that child immediately exec()s a new

program.
■ It’s a bit wasteful to copy the entire memory space in fork() if it’ll be immediately

discarded…
■ For now: don’t worry about that. Naive fork is ok; lab3 will improve upon it

● Many uses
○ The shell uses fork/exec to run commands
○ Linux uses fork/exec to load new programs

■ Windows has a “launch a new process running that” function
■ Linux does not.
■ Whenever you run a new process, forks off of the root process and execs.

31

X86_64 Calling Conventions

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the

register contains a pointer to the array’s beginning

32

Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]
argv[argc] = NULL

Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Why? Alignment
● Why NULL pointer?

Convention

SZ_2G

33

\0… (padding)

Practice Exercise 1

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“cat cat.txt”

34

2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
Argv[1]

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which is 2
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

35

Practice Exercise 1: Solution

\0\0\0\0
Argv[2] = NULL

Practice Exercise 2

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“kill -9 500”

36

3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

Return PC
argv[0]
argv[1]
argv[2]
argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down

37

Practice Exercise 2: Solution

\0\0\0\0

