
Operating Systems

Section 1 - C, GDB, Lab 1 Intro
1/5/23

Your TA (AB): Aragorn Crozier (they/them)

2nd quarter TAing this
class

2

Your TA (AB): Sidharth Lakshmanan (he/him)

2nd Quarter TA’ing OS

3

Overview

1. Administrivia
2. Info about labs
3. Brief recap of 351/333 topics
4. Tools for debugging
5. Intro to lab 1

4

Reminders

● Find a lab partner and fill out the form by Friday 1/6 (TOMORROW)
● Lab is out now
● Readings due every class

5

Regarding office hours

● There are a lot of strange ways you can break xk
● Unlike in other classes, there are many functional ways to structure your code

(no one right answer)
● Going through GDB in office hours is way too slow

● Please do preliminary debugging as far as you can before office hours, so we
can give useful advice

● For particularly weird issues, we might not be able to solve your bug within
available time constraints

6

Discussion Board

If you’ve tried debugging and have come up against a wall that would take too long for
office hours, consider posting on the discussion board.

Include DETAILS
- What is the problem
- Which methods does it manifest in
- What does work
- What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be
helpful is directly influenced by the quantity of useful debugging information you
provide.

7

Late Policy

Labs have 3 parts: Code, Questions, Design Doc (except lab 1)

Lab code isn’t due until the end of the quarter

● This doesn’t mean you should procrastinate
● We want you to be >95% done by the deadline; that last 5% can take a long

time, so you can start on the next lab and come back and fix the last 5% later
if you have time

Questions are due on the lab deadline (no late days)

Design docs are due according to the calendar (no late days)

8

Labs

There are 4 labs:

1. File System Calls (Out now!)
2. Processes and Pipes
3. Memory
4. File System

9

10

Why should you start Lab 1 early?

- It takes time to get used to qemu and xk
- Create your own file info struct

- Have to figure out what fields are needed
- Compile Time Issues
- Getting comfortable with gdb

Time to complete varies between 5 hrs and 20 hrs

11

Part 1: The C Programming
Language

12

- Functions & Structs (they exist, and are about as complex as C gets)
- Pointers & Memory (to * or not to *, that is a question)
- Forward Declarations & Header files (working with multi-file projects)
- The Preprocessor (and how it relates to header files)
- Assembly

What Was C, Again? A Brief Recap
To jog your memory, not to re-teach C. Skimming over 351/333 isn’t a bad idea

13

// function, like in most programming languages
int sum3(int x, int y, int z) {
 return x + y + z;
}

// not a class: only public fields, no inheritance or methods
// typedef lets you refer the struct as “struct Point2D”, or just “Point2D”
typedef struct Point2D {
 double x;
 double y;
} Point2D; // These names happen to match, but they don’t have to

double dot(struct Point2D point1, Point2D* point2) {
 return point1.x * point2->x + point1.y * point2->y;
}

14

Functions (code to call), Structs (bundle of state)

Pointers & Addresses

● &: Gets the address of where something is stored in (virtual) memory
○ a 32/64 bit (4/8 byte) number
○ you can do arbitrary math to a pointer value (might end up with an invalid address……)

● *: Dereferencing, “give me whatever is stored in memory at this address”.
○ dereferencing invalid addresses (nullptr, random address) causes a segfault!
○ But not in xk!

15

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

void increment(int* ptr) {

 *ptr = *ptr + 1;

}

int x = 3;

increment(&x);

// x is now 4

← Pass in a pointer: the address at which some int is stored
*ptr gets the value stored at the address stored by ptr
So we assign to the memory at ptr’s address:
 “whatever was there before + 1”
The pointer (address) is passed by value: “*ptr = *ptr + 1;
” only changes the local “ptr” variable

← Use the address at which ‘x’ resides in memory

16

Pointers & Addresses

void class_string(char** strptr) {

 *strptr = "class";

}

char str[6] = "hello"; // why 6?

char* str2 = str;

class_string(&str2); // what would printf(str2) output?

17

Pointers & Addresses

void random_coordinate(int* x, int* y, int* z) {

 *x = rand() % 100;

 *y = rand() % 100;

 *z = rand() % 100;

}

int x, y, z;

random_coordinate(&x, &y, &z);

18

Function Ordering

- C compiler is single pass
- If you define function A, then function B, the compiler doesn’t know

about B until it’s done reading A
- This will have a compiler error: when reading get4()’s implementation,

get3() is unknown

int get4() { return get3() + 1; }

int get3() { return 3; }

19

Solution: Forward Declarations, Header Files

- The solution? Declare things before defining them

20

int get3(); // There will be a function get3 with this signature
int get4(); // Also one called get4()

int get4() { return get3() + 1; } // Now this is okay: we
promised the compiler that get3() will exist
int get3() { return 3; }

- We end up putting our forward declarations in a header file so that we know
everything is declared first. As a bonus, other code can reference the header
file to use functions it declares

Forward Declarations of Global Variable

/* === header.h === */
extern int var; // declare a variable without allocation

/* === program.c === */
#include "header.h"
int var; // define (allocate) a variable

int get() {return var;}

/* === another_program.c === */
#include "header.h"

// Don't define the variable again! Variable allocated in "program.c"
int get2() {return var * 2;}

21

Header Files & The Preprocessor

Now we have two problems:

1. Implementations don’t have the forward declarations
anymore (we moved to a new file)

a. Solution: The Preprocessor #include “MyHeader.h” in effect,
replace this line with the entire content of MyHeader.h

2. Duplicated declarations: if the header file is included in
multiple places, we can end up declaring the same function
signature multiple times (since #include is copy-paste)

a. Solution: Header Guards, everything between the ifndef and endif is only
expanded once

22

// mymath.h

#ifndef MYMATH

#define MYMATH

int get4();

int get3();

#endif

Preprocessor Macros to Know

#include: embed the given file here. As in, copy-paste the whole thing.

#define A (or #define A B): register A as a known symbol. If B is given, replace all
occurrences of A with B

-> Used for constants! (e.g. “#define SIZE 20”)
-> Also used for macros. e.g. “#define MAX(a,b) (a) > (b) ? (a) : (b)”
This is a find/replace operation. Be careful of the operator precedence!

#if ___ / #endif : Only include the code between the #if and #endif if the condition is
true

#ifdef ____ / #ifndef ____ / #endif: Only include the code between this and endif if the
symbol is/isn’t defined

23

Part 2: Tools For Debugging

24

Old Friend: Printf

Prints are very useful for simple debugging:
● How far have we reached in a function?
● How many times did we meet a condition?
● Function invocations & its parameters

However, sometimes prints are not enough:
● bugs in your code can impact printfs in unexpected ways
● printf grabs a console lock that may make the bug difficult to reproduce
● printf uses a buffer internally, so prints might be interleaved
● can't print in assembly

25

New Friend:

GDB
This is a systems class and you’ll be doing a LOT of debugging

Also lots of pointers.
Really, the pointers are the main reason for the debugging

26

GDB commands to know: a non-exhaustive list

gdb path/to/exe
run: start execution of the given executable
n: run the next line of code. If it’s a function, execute it entirely.
s: run the next line of code. If it’s a function, step into it
c: run the rest of the program until it hits a breakpoint or exits

b _____: set a breakpoint for the given function or line (e.g. “b myfile.c:foo” or “b
otherfile.c:43”)
bt: get the stack trace to the current point. Can be ran after segfaults!
up/down: go up/down function stack frames in the backtrace
(r)watch _____: set a breakpoint for the given thing being accessed
p _____: print the value of the given thing
x _____: examine the memory at an address. Many flags

27

GDB Example

28

General Debugging Tips

- Get familiar with GDB
- Stepping through line by line and printing out variables is slow, but will find the bug.

- Make sure you know what the code is supposed to do first
- There are a lot of complicated systems, with limited framework. Unlike 333, this isn’t

fill-in-the-blank
- Should still use printfs

- It can be an efficient way to find what section of code is wrong so your GDB debugging can
be more focused

- GDB step by step tutorials online
- GDB cheat sheet

You will get a chance to practice with GDB in Lab 1 :)

29

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Any questions so far?

30

Get to know xk
And Lab 1

*somewhat new slides; please free to give
feedback to improve these slides* - 23wi

31

What is xk?

- xk stands for “experimental kernel”
- Configured to run on qemu (hw emulator)
- A simpler version of the early linux kernel
- 64 bit port of xv6

32

https://en.wikipedia.org/wiki/Xv6

Which file is in which directory?

- inc
- contains all the headers (.h) files
- Most of the structs are/will be defined in the header

files

- kernel
- Kernel source code for all the different components.
- Big chunk of the lab is based on this folder

33

Which file is in which directory? - CONTD

- user
- All the “user” files, i.e everything that is not part of the kernel
- Lab tests, shell, source code for binaries like ls, wc, ln etc.

- Lab
- Lab related docs, specs and design docs

34

Different components of the xk kernel (roughly)

- Syscalls
- File System

- file.c deals with open files management and managing the file info struct (lab1)
- fs.c deals with writing and reading blocks from disk and other helper functions (lab4)

- Processes
- fork/exec/wait implementation
- proc.c and exec.c (lab 2)

- Memory management
- writing the page fault handler (for stack, heap, and else) , trap.c (lab3)

35

Lab 1

File syscalls

36

Where to start?

https://gitlab.cs.washington.edu/xk-public/23wi/blob/main/lab/lab1.md
Start by reading:

● lab/overview.md - A description of the xk codebase. A MUST-READ!
● lab/lab1.md - Assignment write-up
● lab/memory.md - An overview of memory management in xk
● lab1design.md - A design doc for the lab 1 code

○ You will be in charge of writing design docs for the future labs (which will be a bit more
comprehensive than the one provided for lab 1). Check out lab/designdoc.md for details.

37

https://gitlab.cs.washington.edu/xk-public/23wi/blob/main/lab/lab1.md

Summary of Lab 1

● File info
○ struct storing info for each open file

● File descriptor
○ per-process file identifier (one for each open file) to use in syscalls

● File syscalls
○ Uses both file descriptor and file info to implement file related system calls

38

File API (UNIX, xk)

file-descriptor = open(filename)

Returns a per-process handle to be used in subsequent calls (implemented as a C int)

Shell pre-assigns stdin, stdout as file descriptors (0, 1)

read/write(file-descriptor, buffer, numBytes)

Read or write numBytes into/out of buffer, changes position in file

file-descriptor = dup(file-descriptor)

Make a new file descriptor, copy of the previous one (used in shell)

close(file-descriptor)

We’re done with using this file descriptor
39

More on the UNIX File API

File descriptors are used for all I/O, eg, network sockets, pipes for interprocess
communication

Applications use read/write regardless of which thing it is reading/writing to

File descriptors are per-process but can be passed between processes

Important for how fork/exec and the shell works

Examples: ls | wc ls > tmpfile wc < tmpfile

Kernel should not trust file descriptor (might not be previously opened, etc.)

App should not be able to crash kernel

40

File Syscalls

You will need to implement a number of file related system calls.

Implementing syscalls consists of two steps:

- parsing and validating syscall arguments
- see implemented syscalls for reference (sysfile.c)
- argptr, argstr, argint, what do these functions do?

- perform the requested file operations
- need to write your own file operations using the provide inode layer

41

File Descriptors - Kernel View

● Kernel needs to give out file descriptors upon open
○ must be give out the smallest available fd
○ fds are unique per process (fd 4 in process A can refer to a different file than fd 4

in process B)
○ need to support NOFILE number of open files for each process

■ each process should know its fd to file mapping

● Kernel needs to deallocate file descriptors upon close
○ close(1) means that fd 1 is now available to be recycled and given out via open

42

File Information

The current xk file system only implements a primitive
inode layer, so you need to create a file abstraction
yourself. We need to track the following information for
each open file:

● In memory reference count
● A pointer to the inode of the file
● Current offset
● Access permissions (readable or writable)

File Struct

43

Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs (need to support a total of
NFILE entries)

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2

File
Struct
Index

NFILE - 2

File
Struct
Index

NFILE - 1

= In use = Available
44

Inode Layer

namei() = opens an inode in memory

readi() / concurrentreadi() = read data using this inode

writei() / concurrentwritei() = write data using this inode

File layer provides “policy” for accessing files, inode layer provides “mechanism”
for reading/writing

45

fileopen

Finds an available file struct in the global file table to give to the process
Hint: take a look at namei()

File
Struct
Index 0

File
Struct
Index 1G

lo
ba

l
Ar

ra
y

0 1 2 3

st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

after open

46

filedup

Duplicates the file descriptor in the process’ file descriptor table

File
Struct
Index 0

File
Struct
Index 1G
lo

ba
l

Ar
ra

y

0 1 2 3st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3st
ru

ct
 p

ro
c

after dup

47

Global File Table

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2G

lo
ba

l
Ar

ra
y File

Struct
Index 3

File
Struct
Index 4

File
Struct
Index 5

File
Struct
Index 6

Process 1’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

fd = index into local File Descriptor Array

48

