
Lab 3 More

Memory Management

1

Reminder

● Lab 3 design doc is due tonight

2

Today’s Agenda

● More detail on vspace and vspace functions

● Some discussion questions on lab 3

● Q&A time

3

vspace Visual Diagram

4

Vregions vs Page Tables

● What's the difference between vregions/vpage_infos and the page table?
● Can you make modifications to struct vpage_info?
● What happens if you make changes to vregions/vpage_info? Is it

automatically reflected on the page table?

5
page metadataregion metadata

Vspace Functions

● Given a virtual address, how do you find which vregion is belongs to?
● Given a virtual address, how do you find its metadata (vpage_info)?
● How do you add new page to frame mapping?
● How do you update the page table to reflect changes in vregion/vpage_info?
● How do you flush the TLB?
● When would you want to flush the TLB?
● Do you need to flush the TLB after a new mapping is added?

6

Physical Memory Management

● our QEMU instance emulates 16MB of physical memory
● it is entirely mapped into the kernel virtual address range starting at KERNBASE

○ can easily find the physical address backing a kernel virtual address: subtract KERNBASE from va
○ can the same thing be done on user virtual address?

7

Physical Memory Allocation

● kalloc allocates a physical frame, it returns the kernel page mapped to the
physical frame for ease of access

● multiple system calls/kernel functions may call kalloc concurrently, what
does kalloc do to keep these accesses safe?

● how does kalloc find a free frame?
○ by looking through metadata for frames (core_map)

8frame metadata

Core_map_entry

● Access should be protected by the kmem.lock
● Can add to the struct to track additional information (refcounts)

○ Why do we care about refcount?
○ When will the refcount be greater than 1?

9

frame metadata

Page Faults Error Code

● Last 3 bits of tf->err
○ B2 is set if fault occurred in user mode
○ B1 is set if fault occurred on a write
○ B0 is set if the faulting page has a valid mapping to a physical frame

10

Meaning of the bits

● When B0 (present bit) is set, what does this imply?
○ page fault not caused by lack of page to frame mapping!
○ must be a permission (page protection) error
○ when a stack growth (access to stack for the first time) occurs, will this bit be set?
○ when a write is done on a cow page, will this bit be set?
○ when a write is done on a mapped read only page, will this bit be set?

11

Meaning of the bits

● When B1 (read/write bit) is set, what does this imply?
○ access is a write
○ if we read on an unallocated stack page, will this bit be set?
○ if we write on an unallocated stack page, will this bit be set?
○ upon a cow read access, will this bit be set?
○ upon a cow write access, will this bit be set?

12

Meaning of the bits

● When B2 (user/supervisor bit) is set, what does this imply?
○ access is done from user mode
○ when a stack growth occurs, is this bit set? (can stack growth happen in kernel mode?)
○ when a cow fork occurs, is this bit set? (can cow happen in kernel mode?)

13

Copy-on-write Fork FAQ

● How do we keep track of physical pages and refcounts?
○ Everyone take a look at kalloc.c!

● What vspace function to write to support COW fork?
○ Which function do we currently use to copy? What should we replace it with?

(Not a trick question, look in the spec.)
● What do the fields of a page (struct vpage_info) need to be after a

copy-on-write fork?
■ How do you know if a given page is in use? How do you know it can be

written to? How can you uniquely identify a page? How do you know which
physical page the vpace maps to?

● What happens to a page that is already read-only before COW fork?

14

More COW

● Synchronization in modifying the vspace in page fault in COW fork?
■ Not needed -- current process has exclusive access to its own vspace (no

multithreading)
■ However, the ref count on the physical page could be concurrently modified

● What can happen if a copy-on-write fork is not synchronized?

15

Helper Macros and Functions

P2V: physical addr to virtual addr

V2P: virtual addr to physical addr

PGNUM: physical addr to page number

va2vpage_info: virtual addr to vpi_info

16

Any questions?

17

