
Lab 2

Tips, DD, Open OH

1

Midterm Feedback

https://uw.iasystem.org/survey/278603

closes on 11/3 (next Friday)

please let us know what you think!

2

https://uw.iasystem.org/survey/278603

Pipe Impl

● a variant of the bounded buffer problem
○ producer = writer, consumer = reader
○ aware of consumer exiting & producer exiting

● when should a writer wait?
○ no room to write and still readers left
○ what about reader wait?

● what should happen when all writers are closed
○ what if there are still readers blocked? what should happen?
○ what if there are new readers coming? what should happen?

3

exec(program, args): args setup

int main(int argc, char** argv)

argc: The number of elements in argv

argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] = 0

4

X86_64 Calling Conventions

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the

register contains a pointer to the array’s beginning

5

Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]
argv[argc] = NULL

Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Why? Alignment
● Why NULL pointer?

Convention

SZ_2G

6

\0… (padding)

Practice Exercise 1

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“cat cat.txt”

7

2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
Argv[1]

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which is 2
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

8

Practice Exercise 1: Solution

\0\0\0\0
Argv[2] = NULL

Practice Exercise 2

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“kill -9 500”

9

3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

Return PC
argv[0]
argv[1]
argv[2]
argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down

10

Practice Exercise 2: Solution

\0\0\0\0

exec tests

● requires pipe!

11

Part 2 Design Doc Peer Review (~10 mins)

● Get into groups of 2 and exchange your design docs for peer review
● Did you learn new cases you hadn't thought about?
● Is there anything you can help out for your peers?
● What are some unanswered questions still?

12

Lab 2 Open OH

13

