
Lab 2

Part 2

1

Monitors in xk

● Lock
○ xk condition variable API only supports spinlock (an impl. choice)

● Condition
○ the shared data that threads are synchronizing on

○ for wait/exit this would be child's state

● Condition Variable
○ the waiter list is tracked by the process table

○ proc in SLEEPING state with the same chan are part of the same CV

○ chan is a pointer, can be anything (think of it as a cv identifier)
2

Sleep, Wakeup, and Chan

● sleep(void* chan, struct spinlock* lk)
○ atomically release your current lock and grabs the process table (ptable) lock

■ if your current lock is the ptable lock do nothing
■ why might your current lock be the ptable lock?

○ sets myproc()->state to SLEEPING
○ sets myproc()->chan to whatever channel we are waiting on
○ yields so that scheduler can run another process

3

Sleep, Wakeup, and Chan

4

● wakeup(void* chan)
○ acquires the process table lock
○ looks for all SLEEPING processes with the given channel (chan)

■ sets each proc->state to RUNNABLE (ready)
■ proc->chan is also cleared to NULL

Monitors in xk

● You will use monitors
to implement wait(),
exit(), pipe() for lab2

● sleep in synch.c is not
the sleep system call

sleep = wait
wakeup = broadcast

no equivalent in xk = signal

5

Lab 2 - Pipe

6

pipe(fds)

● Creates a pipe (kernel buffer) for process to read and write

● From the user perspective: returns two new file descriptors
○ fds[0] = “read end”, not writable
○ fds[1] = “write end”, is not readable

● You’ll want to make this compatible with existing file syscall interface

● Pipe allows processes to communicate with each other
○ parent opens a pipe, forks a child, and now they both have access to the pipe ends
○ typically one process only leaves one end open (closes the read end or the write end)

7

Pipes

● A mechanism for process communication
● By calling sys_pipe, a process sets up a writing and reading end to a

“holding area” where data can be passed between processes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

8

read
end

write
end

Pipes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

9

read
end

Process 2’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

● Process 1 calls fork(), fd table is duplicated

write
end

same pipe!
read
end

write
end

Pipes

● Process 1 close(1), process 2 close(0)
● And now we have a pipe across processes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3

st
ru

ct
 p

ro
c

PROC_MAX_FILE

Abstraction of a pipe

10

write
end

read
end

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File Struct
(Read only)

File Struct
(Write only)

PipeImplementation of a pipe

11

Pipes

● Where should pipe be allocated?
○ pipes should be allocated at runtime, as requested
○ how does xk do dynamic memory allocation?

■ (hint: kstack is also dynamically allocated)

● When can you free the pipe and its buffer?
○ remember there may be multiple read ends and write ends

● Can we always write to or read from the buffer? (Hint: bounded buffer sync)
○ What if there's no room to write, or no data to read?
○ What happens if all read/write ends are closed?

● Pipe operations go through file syscall
○ Need a way to determine if a struct file is an inode or a pipe

12

Pipes Impl. Tips

● What metadata/information do you need for pipe?
○ offset to read from
○ offset to write to
○ whether the read end is still open
○ whether the write end is still open
○ # of bytes available in the buffer
○ lock and condition variables

● Similar to the bounded buffer problem

13

Lab 2 - Exec

14

exec(program, args)

● Fully replaces the current process; it does not create a new one

● How to replace the current process?
○ need to set up a new virtual address space and new registers states
○ and then switch to using the new VAS and register states
○ file descriptors and pid remain the same

15

exec(program, args)

● Setting up a new virtual address space
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to allocate stack vregion

■ you still need to populate user stack with arguments
■ vspacewritetova to write data into the stack of the new VAS

○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right!
○ Look at what vspacefree does

16

exec(program, args): args setup

int main(int argc, char** argv)

argc: The number of elements in argv

argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] = 0

17

X86_64 Calling Conventions

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the

register contains a pointer to the array’s beginning

18

Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]
argv[argc] = NULL

Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Why? Alignment
● Why NULL pointer?

Convention

SZ_2G

19

\0… (padding)

Questions?

20

Autograder Tips

● Autograder runs each test individually and then all part1/part2 tests
● part1 and part2 tests are run with make ICOUNT=2/4/6/8/10

○ ICOUNT is an argument to the Makefile
■ should make your bug show up more consistently (per configuration)
■ vary the amount of instruction interleaving (with different icount values)
■ ICOUNT is default to 10 when you run make qemu

○ If your kernel fails on certain ICOUNT config, you can reproduce it locally with
make qemu ICOUNT=2/4/6/8/10 to debug

21

Debugging Tips: Trap Errors

● Trap Errors
○ unexpected trap 14 from cpu 0 rip ffffffff80102f27 (cr2=0x0)
○ trap 14: page fault, invalid memory access (most of the time)
○ rip ffffffff80102f27: line of code caused the page fault
○ cr2=0x0: the memory address that caused the page fault

22

For more details, check out debugging.md

https://gitlab.cs.washington.edu/xk-public/23au/-/blob/main/lab/debugging.md?ref_type=heads

Debugging Tips: Record & Replay

Starting with lab2, there are multiple processes, meaning more concurrent
accesses to the kernel code, which might make bugs harder to reproduce.

make qemu-record

record all external events to a log file

 helpful if you can record the race condition

make qemu-gdb-replay (pair with make gdb)

replay according to the log file, but with gdb (similar to make qemu-gdb)

23

