Overview

1) Review of C
2) Tools for debugging
3) Office hours, discussion board
4) Lab 1 intro
Review of C
Pointers & Addresses

- `&`: Gets the address of where something is stored in (virtual) memory
 - a 32/64 bit (4/8 byte) number
 - you can do arbitrary math to a pointer value (might end up with an invalid address......)
 - `Ptr++` Increments address by the size of the pointed to type
 - no pointer arithmetic on a void pointer!

- `*`: Dereferencing, “give me whatever is stored in memory at this address”.
 - dereferencing invalid addresses (nullptr, random address) causes a segfault!

A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa
Pointers & Addresses

void increment(int* ptr) {
 *ptr = *ptr + 1;
}

void example() {
 int x = 3;
 increment(&x); // value of x?
}

← Pass in a pointer
ptr = address of an int
*ptr = value stored at the address ptr

← Gets the address at which 'x' resides in memory
Pointers & Addresses

```c
void class_string(char** strptr) {
    *strptr = "class";
}
void example() {
    char* str = "hello"; // what would strlen(str) return?
    char* str2 = str;
    class_string(&str2); // what would printf(str2) output?
}
```
Find the bug 🐛

```c
struct elem {
  int value;
  struct elem *next;
};

int example(struct elem* e) {
  if (e != NULL) {
    return e->next->value;
  }
  return -1;
}
```
Find the bug 🐛

```c
struct elem {
    int value;
    struct elem *next;
};

void increment(struct elem *e) {
    if (e != NULL) {
        e->value += 1;
    }
}

void example() {
    struct elem *e;
    increment(e);
}
```
Find the bug

```c
struct elem {
    int value;
    struct elem *next;
};

struct elem* alloc_elem() {
    struct elem e;
    return &e;
}

void example() {
    struct elem* e = alloc_elem();
    if (e != NULL) {
        e->value = 0;
    }
    // ...
}
```
Tools For Debugging
Old Friend: Printf

Prints are very useful for simple debugging:
- How far have we reached in a function?
- How many times did we meet a condition?
- Function invocations & its parameters

However, sometimes prints are not enough:
- bugs in your code can impact printf in unexpected ways
- printf grabs a console lock that may make the bug difficult to reproduce
- printf uses a buffer internally, so prints might be interleaved
- can't print in assembly
New Friend:

This is a systems class and you'll be doing a LOT of debugging
Also lots of pointers.
Really, the pointers are the main reason for the debugging
GDB commands to know: a non-exhaustive list

- `gdb path/to/exe`
- `run`: start execution of the given executable
- `n`: run the next line of code. If it’s a function, execute it entirely.
 - `ni`: Same behavior, but goes one `assembly instruction` at a time instead.
- `s`: run the next line of code. If it’s a function, `step` into it
 - `si`: Same as “s”, but goes `one assembly instruction` at a time instead.
- `c`: run the rest of the program until it hits a breakpoint or exits
GDB commands to know: a non-exhaustive list

- **b _____**: set a breakpoint for the given function or line (e.g. “b file.c:foo”)
- **bt**: get the stack trace to the current point
- **up/down**: go up/down function stack frames in the backtrace
- **(r)watch _____**: set a breakpoint for the given thing being accessed
- **p _____**: print the value of the given thing
 - Can understand C-style variable syntax, e.g.: `p *((struct my_struct*) ptr)` interprets the memory pointed to by ptr as a `struct my_struct`.
- **x _____**: examine the memory at an address. Many flags
GDB Example

```c
#include <stdio.h>

void increment(int *ptr) {
    if (ptr == NULL) {
        exit(1);
    }
    *ptr += 1;
}

int main() {
    int a, b, c;

    printf("starting value for a: %d, b: %d, c: %d\n", a, b, c);
    increment(a);
    increment(a);

    increment(NULL);
    return 0; // never reaches here
}
```

Reading symbols from a.out...done.
(gdb) b main
Breakpoint 1 at 0x40060d: file example.c, line 13.
(gdb) b 5
Breakpoint 2 at 0x4005e9: file example.c, line 5.
(gdb) run
Starting program: /homes/iws/jili/a.out
Breakpoint 1, main () at example.c:13
13 printf("starting value for a: %d, b: %d, c: %d\n", a, b, c);
(gdb) print a
$1 = 0
(gdb) print b
$2 = 0
(gdb) print c
$3 = 32767
(gdb) n
starting value for a: 0, b: 0, c: 32767
14 increment(a);
(gdb) c
Continuing.

Breakpoint 2, increment (ptr=0x0) at example.c:5
5 exit(1);
(gdb) bt
#0 increment (ptr=0x0) at example.c:5
#1 0x0000000000000034 in main () at example.c:14
(gdb)
GDB Cheatsheet

See this GDB cheatsheet for a good overview of what’s possible:
Logistics
Regarding office hours

- There are a lot of strange ways you can break xk
- Unlike in other classes, there are many functional ways to structure your code (no one right answer)
- Going through GDB in office hours is way too slow
- Please do preliminary debugging as far as you can before office hours, so we can give useful advice
- For particularly weird issues, we might not be able to solve your bug within available time constraints
Discussion Board

If you’ve tried debugging and have come up against a wall that would take too long for office hours, consider posting on the discussion board.

Include DETAILS

- What is the problem (What did you expect to see? What actually happened?)
- Which methods does it manifest in
- What does work
- What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be helpful is directly influenced by the quantity of useful debugging information you provide.
Reminders

- Find a lab partner and fill out the form by tomorrow!
- Read through lab 1 handout
- Readings due every class
Lab 1 Intro
What is xk?

- xk stands for “experimental kernel”
- Configured to run on qemu (hw emulator)
- A simpler version of the early linux kernel
- 64 bit port of xv6
Different components of the xk kernel (roughly)

- **Syscalls**
- **File System**
 - file.c deals with open files management and managing the file info struct (lab1)
 - fs.c deals with writing and reading blocks from disk and other helper functions (lab4)
- **Processes**
 - fork/exec/wait implementation
 - proc.c and exec.c (lab 2)
- **Memory management**
 - writing the page fault handler (for stack, heap, and else) , trap.c (lab3)
Where to start?

Start by reading:

- **lab/lab1.md** - Assignment write-up
- **lab/overview.md** - A description of the xk codebase
- **lab/memory.md** - An overview of memory management in xk
- **lab/lab1design.md** - A design doc for the lab 1 code
 - You will be in charge of writing design docs for the future labs (which will be a bit more comprehensive than the one provided for lab 1). Check out lab/designdoc.md for details.
Summary of Lab 1

- Setup your xk repo
- Read and learn about existing code
- Support file API (through syscalls)
 - syscall validation (checking for valid args etc.)
 - open file (I/O) abstraction
 - user: file descriptor
 - kernel: file_info
fd = open(filename)
 Returns a per-process handle to be used in subsequent calls (implemented as a C int)
 Shell pre-assigns stdin, stdout as file descriptors (0, 1)

read/write(fd, buffer, numBytes)
 Read or write numBytes into/out of buffer, changes position in file

new_fd = dup(fd)
 Make a new file descriptor, copy of the previous one (used in shell)

close(fd)
 We’re done with using this file descriptor
File API

● File descriptors
 ○ used for all I/O, eg, network sockets, pipes for interprocess communication
 ○ applications use read/write regardless of what it is reading/writing to
 ○ per-process
 ■ but can be passed between processes
 ■ inherited by child processes
 ● important for how fork/exec and the shell works
 ● examples: \texttt{ls | wc} \texttt{ls > tmpfile} \texttt{wc < tmpfile}

● Kernel \textit{should not} trust file descriptor (might not be previously opened, etc.)
 ○ applications should not be able to crash kernel
File Syscalls

You will need to implement a number of file related system calls.

Implementing syscalls consists of two steps:

- parsing and validating syscall arguments
 - see implemented syscalls for reference (sysfile.c)
 - argptr, argstr, argint, what do these functions do?
- perform the requested file operations
 - need to write your own file operations using the provide inode layer
File Descriptors - Kernel View

● Kernel needs to give out file descriptors upon open
 ○ must be give out the smallest available fd
 ○ fds are unique per process
 ■ (fd 4 in process A can refer to a different file than fd 4 in process B)
 ○ there's a max number (NOFILE) of open files for each process
 ■ each process should know its fd to file mapping

● Kernel needs to deallocate file descriptors upon close
 ○ close(1) means that fd 1 is now available to be recycled and given out via open
The current xk file system only implements a primitive inode layer, so you need to create a file abstraction yourself. You need to track at least the following information for each open file:

- In memory reference count
- A pointer to the inode of the file
- Current offset
- Access permissions (readable or writable)
Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs
Inode Layer

- `iopen()` = looks up an inode using a given path (populates and loads inode into memory if necessary), increments the inode’s reference count
- `irelease()` = decrements this inode’s reference count (internally, once the reference count is 0, this inode is removed from the inode cache)
- `readi()` / `concurrentreadi()` = read data using this inode
- `writei()` / `concurrentwritei()` = write data using this inode
- `locki()` and `unlocki()` = locks or unlocks the inode (this does NOT change the inode’s reference count)

File layer provides “policy” for accessing files, inode layer provides “mechanism” for reading/writing

Note: For Lab 1, it is likely not necessary to call `locki()` or `unlocki()` directly
Lab 1: Start Early!

- It takes time to set up and navigate the code base
- Compile Time Issues
- Getting comfortable with gdb
Git Resources

- Git manual: https://git-scm.com/docs/user-manual
- Git tutorial: https://learngitbranching.js.org/?locale=en_US