
Part C: Crash Safety

1



Journaling

For any operation which must write multiple disk blocks atomically…

1) Write new blocks into the log, rather than target place. Track what target is.
2) Once all blocks are in the log, mark the log as “committed”
3) Copy data from the log to where they should be
4) Clear the commit flag

On system boot, check the log. If not committed, do nothing. If so, redo the copy 
(copy is idempotent)

2



The Log

Step 1: “log_begin()”

The Disk
(Main Storage)

Make sure the log is cleared

3

Log 
Header
commit = 0

…



The Log

Step 2: “bwrite(data block 1)”

The Disk
(Main Storage)

Write into the log, rather than the place in the 
inode/extents region we want it to go

Also need to track the actual location of the 
data block so you know where to write 
logged blocks to on recovery!

4

Log 
Header
commit = 0

…

Data
Block 1



The Log

Step 3: “bwrite(data block 2)”

The Disk
(Main Storage)

Write into the log, rather than the place in the 
inode/extents region we want it to go

5

Log 
Header
commit = 0

..

Data
Block 1

Data
Block 2



The Log

Step 4: “log_commit()”  [1]

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Mark the log as “committed”

6

Log 
Header
commit = 1

…



The Log

Step 5: “log_commit()”  [2]

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

Copy the first block from log onto disk

7

Log 
Header
commit = 1

…



The Log

Step 6: “log_commit()”  [3]

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

Copy the second block from log onto disk

Data
Block 2

8

Log 
Header
commit = 1

..



The Log

Done! 

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

We have both data blocks 1 and 2 on disk - 
everything was successful.

For efficiency, we can zero out the commit 
flag so the system doesn’t try to redo this

Data
Block 2

9

Log 
Header
commit = 0

…



The Log

Example: before commit--CRASH

Data
Block 1

The Disk
(Main Storage)

On reboot…
There’s no commit in the log, so we should 
not copy anything to the disk

10

Log 
Header
commit = 0

…



The Log

Example: after commit, before clear–CRASH

Data
Block 1

Data
Block 2

The Disk
(Main Storage)

Data
Block 1

On reboot, we see that there is a commit flag

We can then copy block 1 and 2 to disk -- 
even though DB1 was already copied over, 
overwriting it with the same data is fine

Data
Block 2

11

Log 
Header
commit = 1

…



Where to Log?

It’s just blocks on disk, so you can put it anywhere you want (within reason)

After-bitmap, before-inodes is a pretty good place
You’ll need to update the superblock struct and mkfs.c (mkfs.c initializes the 

disk during the compiling process)

12



Log API

● The spec recommends designing an API for yourself for log operations:
○ log_begin_tx(): (optional) begin the process of a transaction
○ log_write(): wrapper function around normal block writes
○ log_commit_tx(): complete a transaction and write out the commit block
○ log_apply(): log playback when the system reboots and needs to check the log 

for disk consistency
■ Where/when should this be called? (Hint: inspect kernel/fs.c)

13


