
Problem Set 1

Q3 :
gettimeofday();

-> actually asystem call .

loop [procedure-call3 -> needs to run many iterations to

gettimeofday();
make the time syscall itself negligible .

10/16/23

Locks
-> synchronization primitive thatprovides mutual exclusion

-> ARIS : lock-acquire ; Il access to shared data look releasel);
Critical section)

-> Properties of a lock
no 2 threads can hold the lock at the same time

- -

① Safety : nothing bad ever happens
->

progress
: a thread cangrab

cyhemosof the

S ② Liveness : something good eventually happens
the lock if it's free

③ Fairness : be fair !
-bounded waiting

: there's an upperboundtoyour
wait time . Ican'tkeep Skipping

overathread)

lock acquel;
Types of Locks .

global-x+t;
lock waiter either in lock-releaseh);

① Spinlock ↑ready or running
State

-> while loop checks lock status until it's free -> long criticalsection
-> implemented wi atomic instro - long wait time

f

-> short critical section

⑧ Sleeplock -

blocking state -

#
shortwait time ??

not

-> blocks sleeps until thelock is free . always .

-> Fo .

- es
-> many waiters

implow/ - ↳ requires context switch (may causea Clock contention)
a
list of waiters ↓
a sleep/notify short wait time I shortcritical section

Example usage :

mechanism- · still needs to pay the
context switch cost

v xK As ops areprotectedHow about long wait time? w) sleeplock (inode)

* Some cases whereyou haveto use spinlock
-> interrupt handlers

Monitors
-> design pattern & synchronization primitive

that coordinate threads based on events
.

· sleep/wake up abstraction

-> consisted of
accessed&updatedby

· conditions : events threads are syncronizing ont multiple
threads

· Locks : protect access to the conditions & conditionvariables

distofwites- condition variables : track waters of a condition , implement

sleep
& walep

-> Cr-wait : put the calling thread to waiter list , blocks thethread&
releases the lock ;

when unblocked, acquires lockdthem returns

-> Cr-Signal : Wake upa waiter
, remove from waiter list

<Blocking -> ready)
-> Cr-broadcast : wake up allwaiters .

used when the condition is

changed& might unblock multiple
waiters.

