
+1

Loads 0
+2-+100

complete

adds1 to 0

writes x = 1

-

0 100

E
nee

2 100



to get 2 :

+2 t2 .

to get 100 =

to loads O
.

loadsO.
- - runs 99 iter ,

t2 reas to x =99
completion
x =100 adds ~ to 0

runs 100 iter. writes x =1
X =108 runs the 100th

iteration
loads 1

runs to

completion
G= /00

adds 1to1
miles x = 2

-
neen

I 200 .



data race ,
10/13/23 race condition

-> reasoning about multithreaded sode that ad data is difficult!

-> time-of-check to time-of-use
-> might be preempted imbetween, data might be changed by are

reader

A reasoning about global-x++; is much easier if it's done atomically .

-> atomic instr .

-> test& set (loc) -> compared swap (CAS)

if
*loc ==0 2 Aloc=1

: returntree] args : lo, old-val,
new_val

else's return false : 3. if (* (O2==old-val) E
* loc = new-al;
return true;

Selses return false; I

>



-> exclusive to shared data makes itmuch easier to reason

-> atomic instr . provides this but only for I memory for
-> how can we do this for arbitrary amountof data access ?

-> What causes us to lose exclusive access ? (singlecore)
-> timer interrupt, preemption !
-> disable interrupts would them provide us exclusive access

· problems : user processes don't
have the privilege for this ,

blocking interrupts -> may lose h events
,

is a per-core operation!
doesn't guarantee exclusive access onmulticore

machines
S



-> What then ? Build software abstraction for exclusive access !

* Locks (mutual exclusion)

· a synchronization primitive that provides exclusive access to a

designated section of code (critical section)

-> Locks API

· lock_ acquire : doesn't return until it acquiresthe lock (grants exclusive access)
· lock-release : gives back exclusive access

Aonly works if threads calls lock-acquie before accessing shared
data

-> thread holding the lock can still be
it's a design pattern!

preempted, but data incritical section Can't change
Since no other thread can acquire the lock .



-> use lock to protect access around shared data

-> How much data should the lockprotect? (lockgranularity)
-> a single lock for all system call data ? I getpid a read)

· can only process (syscall at a time , even ifthey don't share data
-> a lock for the entire file-info away or a lock for each entry ?I Is B I Is B B B

-111111
Seasy to reasonabout

,

allows for conserent
access to different entries ,

limits conserventaccess

to different entries
harder to reason (what if youneed to access

multiple entries together.
coarse-grained locking fine-grained the ordering ofacquiring locks

locking can cause troubles)



Locks Impl. / Types of Locks lock : o if free
2 if busy

-> Spinlock While!test&set(dlock) (E,3
· lock acquire : spins while the lock is busy
· look release : clears lock state to free

-> sleeplock while (lock ! =free) block1)is

· lock acqure : sleeps while the lock is busy
· look release : clears lock state to free, wakes up a

menter
.


