
1019123

Process API
-> fork , exec , for exec combo, cow fork

-> exit

· terminate the current process
· need to clean up address space

& OS resources (openfiles)
· kernel stack can't be freed by the process using it

-> wait

· wait for a child to terminate -
it child hasn't terminated, block until it exits

· clean up child's resources (kstack)

A process don't
have to call wait

-> hand over unwaited children to init process when parent exits



Inter Process Communication (IPL)

-> signals :

a set of process events defined by the OS
os checks whether sending prot

-> send& delivery done through the OS
-

has the perm, to send .

-> send : kill /pid, sig#) system call O
Os tracks a set of pending signals per process

-> delivery : Kernel delivers signals before a
process returns to user mode .

-> kerel defines defaultactionfor each signal
-> also allow user process to define custom
handler : signallsig, handler-fune) .

system
call

* custom handler executes in usermoder
on a user stack .



Threads Process = Address Space
-

-> unit of execution /tasic
+ OS resources

+ threads
-> execution states : PC , SP, registers

-> multithreaded program (concurrent)

-> divide program into tasks (threads)

-> conmuency vs. Parallelism
↳ structured into & execute simultaneously
tasks

-> OS as a multithreaded program each kernel handler

is is own task/execution

⑮ is is user

-

↳syscall syscall exception Kernel


