
-

1211123

LFS Review Idatablock , imode, imodemap)
d

-> large sequential writes : append updates the log
↳ eached in memory

Segments written after

**-... ht (log contains multipleversions to metadataldatal
be

segment Checkpoint Log
↓

checkpoint region (fixed(oc)
-> loc of imodemappieces at time of checkpoint
-> tracks last checkpointed segment

How do we update the checkpoint Region?
-> CR spans overmultiple blocks , update must beatomic !

-> txn-begin timestamp] upon a crash , if begin d commit
-> IR blocks has matching timestamp, the ty
-> txn-commit timestamp]

is valid
!
Otherwise , CR is invalid.

*What to do when CR is invalid ?

If there's only 1 CR, we no longer
have a consistent checkpointof our filesystem

· S

-> 2CRs , toggle update * Recall that CR is mitten atan

infrequent interval -> may recover-> both valid , pick newer one consistent but state Is state ?

-> only 1 valid, pick the validone -> roll forward by apply valid
-> is it possible for both to be invalid ? segments past the checkpoint

ent

Garbage Collection

-> segment cs
are livea some aregarbage↓

each has a segment summary (sometimes multiple
...)

tracking each data block's imode & offset
-

if we look up
the imodemap using this info

and

->

compact live blocks find amatch , block is line , otherwise, block isgarbage

within multipleSegmena e
-> threshold for compaction
if 90% are live

, probably shouldn't compact
-> hot vs, cold segment

some data mightbeupdated more frequently ,
delay compaction could seemore garbage .

-> one more cowts : IEs

until a new
rootblk is written
apointto new sets of updatedblocks, no change is observed by the filesys .
-> actually carries out recursive update (no logical ptr like LFS's imodemap)

I updates appear atomically after
the new roofmode becomes active

-> isn't this alotof disk writesfor
just adding onenew datablock?

A buffer more updates in

memory to amortize the rost

of path reunite!

Also supports logging for perf.
-> logical logging (only log operations,

not changed blocks)

User Level Threads

-> Kernel threads (TC]
-> pthread #PI, manageda scheduled by Kernel (kernel + user)
-> creation -> system call, every context switchinvolves a mode switch

-> MB of stack
-> user threads

-> managed a created via user libraries a runtimes
-> smaller/adaptive stack size
-> every context switch & creation is just aprocedure call

N user threads
.

threads
-> ownstack

-> ownsip(func)Sibh
ener

... mem-> oven state

Creg & TCB]

