
Review

-> each fs op may cause multiple block updates: inode, data block, data bitmap
-> journaling:

-> txn abstraction

-> logging data & metadata
-> double the writes: once to the log, once to actual locs

-> logging metadata
-> only log metadata
-> persist the data blocks first

11127/23

(100) (101) (102]

tx-begin, updated , updated updated
,
Ex-committo101

(ext4 (inode, bitmaps , directory data) ↳ordered
model

↑



Request reordering problem

-> one txn may need to write a number of blocks
-> concurrent requests can be reordered by disk controller

-> concurrent = request sent without waiting for a previous request’s completion 
-> serial = request sent after a previous request completes

-> write to tx_begin and tx_commit may complete before updates are fully written
-> how do we deal with this?

-> detect it:
compute and write checksum of the full txn as part of tx_commit
on recovery, if txn doesn’t have matching checksum, it’s not valid, shouldn’t be applied

-> avoid it:
restrict order of writes! send barrier command before the tx_commit write
ensures that all previous requests are done before writing tx_commit

ex-begin , updates , ex-commit



Interaction with Buffer/Block Cache
-> cache disk blocks in memory
-> typically a write back cache
-> disk block is cached upon first access

on cache hit, no disk I/O needed
-> when cache is full, run eviction 
-> log block are also cached

Interaction with fsync
-> simple semantic: each fs op update persist immediately on disk
-> very slow filesys! disk I/O is slow
-> fsync: lets processes request persistence explicitly

-> lets up other ops update only cached blocks in memory
-> persistence done periodically and through fsync calls
-> on fsync, the journal needs to be persisted!

-> is a per file/directory API
-> calling fsync on a new file doesn’t necessarily persist changes to the parent dir
-> to truly persist the file, need to fsync parent dir and fsync new file
-> fsync involves disk I/O and is often slow 
-> users want to both reduce the amount of fsync calls and still fsync enough to 
keep application state consistent 

A
buffer cache



Transaction size
-> so far, we assume one txn per operation
-> accumulates txns in the log, persist log upon fsync
-> what does the log look like if we keep appending 1 byte to a file

logs every version of the inode despite we only care about the latest 
version at the time of persistence (fsync)

-> group multiple operations into a single txn
-> avoid logging intermediate versions of metadata
-> consolidate updates to shared metadata(e.g. block bitmap) into one 
-> ext4 has a single active global txn at a time
-> txn commits on fsync
-> downside: performance interference! unrelated ops are grouped 

into the same txn, caller of fsync needs to persist all changed data 
blocks first before persisting the log

[txno : inodev/txn1 : inodev2/t5 : inode -3 ... ]



bio- 2



fs .C

asking butter

cache to bring C =>

the block
into --

contiguous data layout ,
memory finddata block foragiven

offset into the file



bio . 2


