11/27/2%

CM:@L
,MM/

Review

(192) L 10} [02D

-> each fs op may cause multiple block updates: inode, data block, data bitmap

-> journaling: Anded Assted W
-> txn abstraction tx.bZJ“W) wf:oo 97'”] (02— , Lieimamit

J

-> logging data & metadata
-> double the writes: once to the log, once to actual locs :7
-> logging metadata

-> only log metadata /Mde I bﬁmzlfs) dexﬁ W) Di v

-> persist the data bIocks first 1

Aisie

Request reordering problem
| tr_lotfin. wpdokes, £ _iommt
-> one txn may need to write a number of blocks
-> concurrent requests can be reordered by disk controller
-> concurrent = request sent without waiting for a previous request’s completion
-> serial = request sent after a previous request completes
-> write to tx_begin and tx_commit may complete before updates are fully written
-> how do we deal with this?
-> detect it:
compute and write checksum of the full txn as part of tx_commit
on recovery, if txn doesn’t have matching checksum, it’s not valid, shouldn’t be applied
-> avoid it:
restrict order of writes! send barrier command before the tx_commit write
ensures that all previous requests are done before writing tx_commit

Interaction with Buffer/Block Cache
-> cache disk blocks in memory l l l ,) ,) l
-> typically a write back cache

-> disk block is cached upon first access)OWH’M ache
on cache hit, no disk I/0O needed

-> when cache is full, run eviction

-> log block are also cached

Interaction with fsync

-> simple semantic: each fs op update persist immediately on disk

-> very slow filesys! disk I/O is slow

-> fsync: lets processes request persistence explicitly
-> lets up other ops update only cached blocks in memory
-> persistence done periodically and through fsync calls
-> on fsync, the journal needs to be persisted!

-> is a per file/directory API
-> calling fsync on a new file doesn’t necessarily persist changes to the parent dir
-> to truly persist the file, need to fsync parent dir and fsync new file
-> fsync involves disk I/0 and is often slow
-> users want to both reduce the amount of fsync calls and still fsync enough to
keep application state consistent

Transaction size
-> so far, we assume one txn per operation
-> accumulates txns in the log, persist log upon fsync
-> what does the log look like if we keep appending 1 byte to a file

[tanp: inodevt [t g = Tnole 2| 4n3 - jode 1v3 -]

logs every version of the inode despite we only care about the latest
version at the time of persistence (fsync)
-> group multiple operations into a single txn

-> avoid logging intermediate versions of metadata

-> consolidate updates to shared metadata(e.g. block bitmap) into one

-> ext4 has a single active global txn at a time

-> txn commits on fsync

-> downside: performance interference! unrelated ops are grouped
into the same txn, caller of fsync needs to persist all changed data
blocks first before persisting the log

//
//
//
//
//
//
//
//
//
77
//
//
//
//
//
//
//
//
//

Buffer cache.

The buffer cache is a linked list of buf structures holding
cached copies of disk block contents. Caching disk blocks
in memory reduces the number of disk reads and also provides

a synchronization point for disk blocks used by multiple processes.

Interface:
x To get a buffer for a particular disk block, call bread.
% After changing buffer data, call bwrite to write it to disk.
% When done with the buffer, call brelse.
*x Do not use the buffer after calling brelse.
* Only one process at a time can use a buffer,
so do not keep them longer than necessary.

The implementation uses two state flags internally:
*x B_VALID: the buffer data has been read from the disk.
% B_DIRTY: the buffer data has been modified

and needs to be written to disk.

bio.c

struct {
struct spinlock lock;
struct buf buf[NBUF];

// Linked list of all buffers, through prev/next.
// head.next is most recently used.
struct buf head;

} bcache;

struct buf {
int flags;
uint dev;
uint blockno;
struct sleeplock lock;
uint refcnt;
struct buf *prev; // LRU cache list
struct buf *next;
struct buf *qnext; // disk queue
uchar data[BSIZE];

// Read data from inode.

// Returns number of bytes read.

// Caller must hold ip->lock.

int readi(struct inode *ip, char *dst, uvint off, uint n) {
vint tot, m;
struct buf xbhp;

if ('holdingsleep(&ip->lock))
panic("not holding lock");

if (ip->type == T_DEV) {

if (ip->devid < 0 || ip->devid >= NDEV || !devsw[ip->devid].read)
return -1;
return devsw[ip->devid].read(ip, dst, n);
}
if (off > ip->size || off + n < off)

return -1;
if (off + n > ip->size)
n = ip->size - off;

for (tot = 0; tot < n; tot +=m, off +=m, dst +=m) {
bp =(breadfip->dev,(Tp->data.startblkno + off / BSIZE))

m = min(n - tot, BSIZE - off % BSIZE); - f : 2 +
memmove (dst, bp->data + off % BSIZE, m); 50“#%?“0%5 2

}br‘else(bp); %MM Mﬁﬂﬁw

return n; a]%&b)‘Mv 7%& ﬁy’/&

b

// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.

. // In either case, return locked buffer.
// Return a locked buf with the contents of static struct buf xbget(uint dev, uint blockno) {

struct buf xbread(uint dev, uint blockno) { struct buf xb;
num_disk_reads += 1;

struct buf xb; acquire(&bcache. lock);

// Is the block already cached?

b = bget(dev, blockno); for (b = bcache.head.next; b != &bcache.head; b = b->next) {
if (!(b—>flags & B_VALID)) { if (b->dev == dev && b—>blockno == blockno) {
iderw(b): b—>refcnt++;

4 release(&bcache. lock);
} acquiresleep(&b->lock);
return b; return b;

}
} }

// Not cached; recycle some unused buffer and clean buffer
Ejﬁ‘cy // "clean" because B_DIRTY and not locked means log.c
// hasn't yet committed the changes to the buffer.
for (b = bcache.head.prev; b != &bcache.head; b = b->prev) {
if (b—>refcnt == 0 && (b->flags & B_DIRTY) == 0) {
b->dev = dev;
b->blockno = blockno;
b->flags = 0;
b->refcnt = 1;
release(&bcache. lock);
acquiresleep(&b->lock);
return b;
}
}
panic("bget: no buffers");

b

