11/ 2o/ 23 FFS & Crash Consistency

FFS:

- designed for disk, block size: 4KB(8 sectors)
- data layout = direct, indirect, double indirect, triple indirect

Iseek to large offset,
then do a write
=> file with gap

Inode

File Metadata

Direct Pointer

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

Dbl. Indirect Ptr.

NIL

Triple Double

Indirect Indirect Indirect Data

Blocks Blocks Blocks Blocks
... []
.. ,[]mmmmmmmm,[]mmmmmmmm,[]

Locality Heuristic

-> sequential access, access tracks close together

-> group tracks into block groups

-> place related things into the same block group
-> exception for large files, why?

-> place unrelated things into different groups

Related things
file metadata & data
file within the same directory

Unrelated things
different directories

Block Group 0

Each block group has its own data bitmap,
inode bitmap, and inode table

Crash Consistency

Ao
jplL W
-> block bitmap, inode table, data blocks 5 A;W""”
-> append that causes a new data block to be allocated ot W o
-> block bitmap updated to reflect the newly allocated data block %Mmf 'I}]

-> inode table (no change in usage status)
-> inode for file updated with new size, modified time, change in data layout

-> data block filled with appended data

-> while we wait for the disk writes to happen, the computer may crash at any point
-> what if only the block bitmap is written to disk?
block leaks! not pointed to by any inode but is seen as used
-> what if only the inode is written to the disk?
file may see other file’s data, block bitmap may allocate it to someone else
-> what if only the data block is written to disk?
all good! no inconsistency in the file system metadata

How to deal with inconsistency?

-> resolve inconsistency: fsck
-> avoid inconsistency
-> we want every operation’s disk updates to be atomic
-> but disk only promises atomicity at a sector level
-> build abstraction for atomic updates to a group of sectors
=> transaction!

Transathon Joumali | Uhile ahed Lo

te_begie o [2 resene space ﬁvlg

A o Sachm_ o 5t
W"ai‘ % % —974”5‘@0?‘% , Wi fran /%72%
IL’”{WIL 3 et e /7%)5+ ﬂb’%
T tommit ~ 2 afff? /7;1@{@7% their actmad Lot o
& Uen s %Lﬁﬁ/ﬁ%s}s/e«ﬂs#dD %;%Z&/ZZTW/

- upon f%ync/ 7r 74(, gngm . [Fosin) owoiy fiksp op

Cost of Journaling

-> perform updates twice, can be expensive
-> can we reduce what we journal?
-> data journaling
log changes to metadata and data, data might be large
-> metadata journaling

/ only log metadata
what happens to the data?

write data changes to their actual location (crash can result in partial data update)
journal metadata once all data blocks are persisted

