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FFS:

- designed for disk, block size: 4KB(8 sectors)
- data layout = direct, indirect, double indirect, triple indirect

Iseek to large offset,
then do a write
=> file with gap
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Locality Heuristic

-> sequential access, access tracks close together

-> group tracks into block groups

-> place related things into the same block group
-> exception for large files, why?

-> place unrelated things into different groups

Related things
file metadata & data
file within the same directory

Unrelated things
different directories

Block Group 0

Each block group has its own data bitmap,
inode bitmap, and inode table



Crash Consistency
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-> inode table (no change in usage status)
-> inode for file updated with new size, modified time, change in data layout

-> data block filled with appended data

-> while we wait for the disk writes to happen, the computer may crash at any point
-> what if only the block bitmap is written to disk?
block leaks! not pointed to by any inode but is seen as used
-> what if only the inode is written to the disk?
file may see other file’s data, block bitmap may allocate it to someone else
-> what if only the data block is written to disk?
all good! no inconsistency in the file system metadata



How to deal with inconsistency?

-> resolve inconsistency: fsck
-> avoid inconsistency
-> we want every operation’s disk updates to be atomic
-> but disk only promises atomicity at a sector level
-> build abstraction for atomic updates to a group of sectors
=> transaction!
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Cost of Journaling

-> perform updates twice, can be expensive
-> can we reduce what we journal?
-> data journaling
log changes to metadata and data, data might be large
-> metadata journaling

/ only log metadata
what happens to the data?

write data changes to their actual location (crash can result in partial data update)
journal metadata once all data blocks are persisted



