
SSD
-> page (4K): read& write (program), takes tens of microseconds
-> block (1-8MB): erase an entire block, takes several milliseconds
-> wear leveling:

pages can only be erased and written so many times
spread writes around so pages wear out around the same time
need a way to remap pages => introduce level of abstraction

11/15/23

Logical Block Address (Block, page)

↓ Flash Translation Layer (implemented by SSD controller)

Physical Block Address (Block
, page) -programmed

-
ralichpage

updates to LBBA can be done on differentpages , justupdate I 177 : invalid
the mapping eachtime! oldpages are now invalida free to page
be recycled during Garbage Collection Block

Performance
total time = access latency + transfer time + (erasure time)
read 10 pages (4KB), read latency (10us per page), transfer rate is 500 MiB/s
E

-

assumenest
serial ref H.8) x 10 = 178us = 0 . 178 my .

-> 78us per 4096bytes

I request

SOPS · 18 ops
x 1000 m 56 K IOPS--

0 . 118ms

File System

software stack

tracking & managing persistent data

file name/path -> data

provide higher level (file abstractions)
on top of disk blocks

Block Cache: cache disk blocks in memory for faster
access, writes to a block might be cached, content of
cached block may differ from the actual on block on disk

f5 . 2

E bior

idea

Filesystem Abstraction
-> operations: read, write, create, delete, link...

-> file abstraction
-> container of data
-> data: file content
-> metadata: size, perisson, owner, access/modify time, *where data is located on disk*

-> directory abstraction
-> a way to group and organize files
-> how to implement the directory abstraction?

-> can we implement directory as file?
-> metadata (same fields as file)
-> data? files within the directory

Ametadata for file
also

known as imode, file
header ...

-aut

Format directory data as an array of directory entries
 (dirent, dentry)

where the metadata is on disk

loc: could be just disk block #,
or could be index into a metadata table

implement directory as file lets us
reuse existing abstraction,
and makes it easy to support
nested directories

↑

LOU

de Imetadata
-

~c .+xt low table
↑

name metadatalocation

Path : "(a)blc/d/data .+x+" absolute path: starts ul -I "not dir

first"1"
↓ relative path :"alblc", starts at current

refers to
"I "separates directory working directory , chair system

rootdirectory call to change and
((d)

read "home/tom/fro .txt"
-

② from root's metadata,
read root's data block

read in
metadata

for rootdir E ④ fromhomesmetadata,
read in home's data block

③from not"s
data

,
locate&

readin home's - ⑥ fromtom's metadata
metadata readintom's data

⑤ from home's
data
,
locate& read -

in tom's metadata ⑧from footat's
metadata

,
readin

⑦fromtom's data, foott's data!
located readin

foo .
Axt's metadata

