
allows A BC
3 available (to beavail takes into account of resources that

0 chopsticks will be returned eventuallyI threads who canfinish
(1) (2) (2)

Ath 100 arcal=2 to beavail=3
·is (i)(t)

CH 0 1 avail :1
, to be awail=2

, 3

(1) (1) (1)

BH 11 I avail-o
,
to be avail=0 (no one can finish)

* unsafe .

-> Why do we need to know the max?

-> can we determine safe vs - unsafe wout knowing themax ?

10127/23

-> avoidance

-> detection

-> Resource Allocation Graph -> recover from deadlock
↑

wait # held
-> aboutaprocess task in the

- ↓by cycle . July wouldthisbeol?)for

Pr P2
-> if app. supports

neldt ↓waitfor
about a retry

I
-> typically imple by7-

I Ps Lif R has multiple instance)
app keeping updates
locally so about

if there's a cycle :
wouldn't leave

single instance resource - deadlock things in a bad
State

multionstance resource -> potential deadlock

Scheduling : How to share the CPU ?

As
t

a thread cando 4

multiple tasks (read, encrypt, -
called turnaround time in OSTEP)

wite) ↓
wait

time

-
table

execution
↓

scheduling +
context

switch

Scheduling Policies

① First in First out (FIFO)

-> scheduling tasks in the order they arrire, eachtast runsto completion
-> wait in line in grocery store both execution&

waittime are

order included
assume that jobs arrire at approximately the sametime in the following-

↳ Tlatency = Tcompletion - Tanial

average latency
- +33)

depends onthe orderof

. ↓
arrival

average latency
-

32+33)

Pros: simple , minimum switching btwn threads cons :

varying latency

↑

② Shortest Job First (35F)
->

How would weknow ifa task is

long or short?
-> also called Shortest Remaining Time First (SRTF)

-> complete the short task first , if shorter task aries , preempt the current task,
switch to the shorter task

assume that jobs arrive at approximately the same time in alphabetical order
econen

it's at the end of the queue)#sos (though
is arived second e

ifmore small jobs keep arriving
B canbe starred (never get achance to run)

assure that jobs arrivealtimes in alphabetical order

I" (-> Bgets preempted when a smaller tash aries

Pros : optimal average latery
Cons = Starvation , san result in more

context switches if we keep
preempting longer tasks

time slice/③ Round Robin (RR
- time quantum

-> FIFo butwith fixed time for each task
nee

-> no starration !

assume that jobs arrire at approximately the sametime in alphabetical order

impact on average latencyLi....
time

[if eachtasktakes Iseconds to finish m) Is time slize]

(subscript = #of times scheduled) STF=7(6+8) RR-
+8)

↑

·How to decide on the dime quantum?
assume 10ms time quantum

A : 10 bound (runs for Ims,
blocks for 3 ms , runs for /ms)

-> too
large? similar to FIFO B ,

C = CPrbound (needs 20ms total to finish the task)
-> too small ? lots of contextswitch overhead

I
-> typically 10-100ms /ms)

m(
A waits a long time before getting

time quantum expires Scheduled again , "fixedtime
"

impacts Ho bound& CPU boundjobs differently
* bad for20 task response

time

④ Multilevel Feedback Omene (MLFQ)
-> RR but multiple quenes witch increasing time quantum
-> improve latency for It bound (interactivel jobs

* one size doesn't

F Q
,
time quantum = /my fitall , so have

- Q2
,

time quantum = 5 ms
multiple time quantum?-

E Q3 ,
time quantan = 10 ms

~

~

