
10/23/23 read-releasels [
1k. acquirel;Write Preferring Rw Locks active-readers---

int active-readers:o ;
Lock IK; if (active-reader

==0

condrar reader-cr;
int waiting-writers

=

0;
ad waiting -witer20)

londrar writer-u;
bool active-with= false;

writer-c signall);
3

read-acquired write-acquirel)[ek
.
release1);

1K , acquire; t. acquirel)" 3
while (waiting-writers >0 waiting -witertt;
11 active wite) [while (active-readers 70 wite-release(4
reader-1 , wait));

11 activewite) 1k.acquireL,
3 writer-w. waith; active write= false;
active-reader+t; 3
IK , releasels ; waiting-miter --; if (waiting- writers >0) 9

3 active-mile=true; writer- (. Signall);
Ilassert (! active mite)

IK , releasels ; else[
3 Ilassert(active readers = = 0); reader-c , broadcast)) ;

3

ek
.
deasels ; 3

Read Preferring vs . Write Preferring
↓ ↳

· new reads allowed as long as · new reads not allowed when
thereare other reads there are writers wanting

· can starve writers limit amout of concurrent ops
(reads)

nee nee·

↳ can we improve on
this ? -> how about this ?

↳ track writers' waittimes and/or

#of waiting writers & use that
as a condition for allowing new reads-

Race Conditions

-> the correctness of the system is dependent on the ordering of scheduling
thread-all threat

-bl)E scheduling order canaffect
printe 2); print(3);

the output, but not
a race

3 3
condition if the output order
doesn' affect thecorrectness

-> some potential causes :

unprotected data access , semantically related states not badusage of/

(global-x++) operated on atomically . Synch- primitives

-> steps to think through for finding races
>if

· what data is in shared location (statically allocated data , hear
may
beonly · who accesses the shared data ?

pr is shared)

sharedI field
in
a

⑭) (1) 11 Lif an away
is shared but each entry is

struct
is

only accessed by one thread ,
no content

E
· granularity of shared data

access , its safe)

-> nondata access race condition

function(sr2 , dst) E t1 (A -> B) +2 (B ->A)

sic- lik-> acquire(); A> lK- acquirel);
dist-> 1k -> acquirel) ; B = 1k-> acquire));

<copy from suc to dst> A - Ik->acquirel);
src-th-> released; B-> 1K-> acquirel) ;

3
dst -> /k-> released); A deadlock given this scheduling order

↳ threads mutually waiton each other
ccycle of waits)

-> How can we break this cycle?
-> lock ordering
-> try locks , release if can't acquire
all locks needed·

