
10120/23 char buffer[N] ; Londuar · not full (_ cr;

Bounded Buffer Problem
int consume-ofs =0 ; Lodvar ,

not empty-Cr ;I int produce -ofs =0;

int count=0 ; 11returns item consumed .
I

-e

function produce Liter) [function consume() [
1K ,acquire ();eK . acquire () ;
while (count==07 [Ilbuffer iswhile (count ==N) E I/ buffer is full empty

not-full-w ,wait1); 3
not-empty- cr,waitt) ;

butfer I assertcount> 0;
<produce-ofs] = item; item : buffer consume -ofs];

produce -of = produce ofs+1)%W; consume ofs (consume-ofstl)%N;
count +t; count---

not-empty-w . signall); 1/wake up consumers not full-w. Signall);
&

ek , releases; Ik . releasel) ;
3 3

-> SynchronizationProblem: Sleeplock (mutex)

Look IK; 1/spirlock.

Conduar IK-cV;
bool free : True

; I/Satis

lock-acquirel)E lock-releasel [
Mk

, acquirel); Ik.acquirell;
While (!free) [free = True;
IK-cr .Waith();

3
lock-cr

. signall);
free = False ; Ik releasel;
t, release1); 3

3

-> Lock : mutual exclusion to shared data
.

nee

-> all accesses to should data are reads ?

-> all accesses to shared data are writes ?

-> access pattern : mix of head writes ?

-> safe to have multiple readers as long
reader as there's no writes

withe
E -> wite needs exclusive access (omademiters)

↑

A 2ndapproach
:

no locks around

Mmme
e

* ist approach : lock anoread
reads

,
locks writes .

allreads & mites .

-> Leader couldseepartial
wites :

-> slow perf . I

profile A: Halia
c·Mostly

real

ee ⑧B =

Reader Writer Locks

-> Apts : read-acquire, read-release , write-acquires write-release
↳ cansucceed when no reader orwiterc)

↳ can succeed if there are already readers
* could lead to starvation

-> Read Preferring vs Writ Prefering
· allow new readers to

· stop new readers from
read even if thereare reads if there are waiting writers
witers waiting · wake up

writer when there are waiting
· wate up readers

readers a wites .

when there are waiting
readers & writer .

Write Preferring Ru Locks
Lock IK ; Londuar reader-cr ; Londrar witer-

Cr;
int active-readers-o; int waiting-unters =0 ;

bool active -
wite=False ;

read-acquire 11[read-releasel) [write-acquiel) [wite-releaselE

Ik
. acquire(; Ik

. acquire(; Ik
. acquire(;

Ik
. acquire(;

while l waiting-
wites >0 waiting -

witer+t;

11 active-write) E while (active-readers o

reader-c .
wait)); ?

Il active wite)[
?

writer-cr .
waitt);

3
active-readers t 3

-

waiting miters --;
OK . releasels; 3 active write: True;

OK . releasels; 3

OK . releases); 3
OK . releasels; 3

