
CSE 451: Operating Systems

Spring 2022

Module 15.0

ZFS

The Zettabyte File System

John Zahorjan

This Module

• We have some slides I’ve built to give an overview
• We also have more details in:

• an early overview paper
• a somewhat more recent, commercial Powerpoint presentation

• Both are linked from the course calendar

Background
• We’ve looked at

• FAT/NTFS/FFS – how to represent file system directory tree on disk; how to choose which
blocks to allocate for metata and for file data

• journaling – how to make the file system resilient to crashes
• log structured FS – how to make all writes big, sequential writes
• RAID – how to take advantage of “bytes are cheap” to obtain better performance, and how

to deal with the elevated disk failure rate that comes from using more disks
• Backup – surviving user mistakes
• Disk partitions – turning one physical device into multiple logical devices

• ZFS comes later (around 2003)
• It is motivated by the difficulty of administering a system, especially one that has

many disks and whose storage capacity may be changing
• Deprecate taking the device from one system to another and having it be self-

describing
• ZFS provides tools to move the file system…

ZFS
• Suppose you have a system with a single disk and it starts to fill.

What do you do?
• Buy a new disk twice as big, install the OS and apps on it, then copy the user

files from the old disk to the new one?
• Buy another disk the same size, keep it as is, and mount the new disk

somewhere handy in the existing file system name space?
• Do that but move some existing data files to the new disk?

• What happens when the I run out of space again?

• One point of ZFS is that the boundaries of physical disks aren’t
sufficiently hidden by existing file systems

Logical Volume Managers (LVMs)
• Physical volumes: disks/partitions
• Logical volume groups: represent

one or more physical volumes,
with boundaries removed

• Logical volumes: partitions
created in a logical volume group

File
System

LVM

Logical Block Address (LBA)

Logical
volumes

Physical volumes

Logical volume group

LVMs

• LVMs can be in hardware (disk controllers) or software
• They can implement various RAID levels
• They can implement JBOD (Just a Bunch of Disks)

• Aggregate storage blocks from many physical devices into one logical volume
• No added error resilience

• RAIDs typically require many disks of the same capacity (and maybe
type)

• JBOD doesn’t care what size they are

LVMs
• Okay, that’s appealing for dealing with physical device boundaries
• Suppose you have formatted the logical volume for some file system

(so superblock, free inode map, and inode arrays have been
initialized and then used)

• Now you want to add storage to the system and then make the
logical volume bigger

• Can that work? Will the file system data structures on the logical volume be
able to use the additional disk?

• Now you want to move space between one logical volume and
another.

• Can that work? Can you shrink a volume that holds files?

• One goal of ZFS is to address the difficult interplay among the
physical devices, the logical devices, and the file systems

Error Resilience

• The only errors we have looked at are:
• system crashes: journaling
• disk dies: redundancy (RAID)

• What about:
• disk has an undetected read error (returns incorrect data)?
• disk has an undetected write error?
• disk writes wrong block (controller or disk error)?
• disk reads wrong block?
• “write holes” on traditional RAIDs

• RAID needs to write a stripe plus parity block, but doesn’t perform those updates
atomically...

ZFS Software Structure

ZFS Disk Management

These operations are supported in the SPA.
ZFS also implements “RAID-Z,” which is RAID-5-like but designed to be resilient to failures during write of a stripe.

ZFS error handling
• A huge file system is likely to experience errors
• “Errors” aren’t just crashes
• Errors can be related to the disk (and be smaller than full device failure):

• disk failures
• disk read/write bit errors
• larger disk errors (e.g., read/write wrong block)

• Errors can be file system bugs
• You read/write the wrong thing…

• You can’t fsck a huge file system
• ZFS amortizes the overhead of dealing with errors over all operation

• extra effort is taken to detect errors “immediately” so that they’re small-grained and can be fixed
• Among other things, ZFS supports a kind of mirroring at the object level (rather than the

disk level -- it does disk level as well...)

• Note: there is current interest in protecting against errors that occur in the CPU – both hardware errors (e.g., memory bit
errors) and software errors (plain old bugs).

ZFS Checksums

• Every block is checksummed
• The checksum is kept in the parent block, the one holding a pointer to the block

• all blocks have a parent block except the “uberblock”(s)
• the uberblock stores its own checksum

• checksums are verified whenever the block is read and recalculated whenever they’re
written

• Note: disk devices do their own (sector-level) checksumming
• this is on top of that

• Note: despite disk devices doing their own checksumming, undetected errors are
observed in the field

• When a checksum error is detected, ZFS can automatically repair using one of the
copies

ZFS Block Pointer

• Pointer can refer to up to 3
copies of the block

• Block size isn’t fixed

• Blocks can be stored compressed

• PSIZE is physical size, LSIZE is
logical size (ASIZE includes
indexing overhead

• checkum[0-3] are copies of the
block’s checksum value

• Blocks have a type (e.g., to
indicate whether it’s a data block
or an indirect block)

ZFS Crash Resilience
• ZFS guarantees that the disk always contains a coherent version of

the file system
• All disk writes are transactional

• Each write is associated with a transaction group
• A transaction group either makes it to disk in its entirety or it’s as if it never

existed

• However, it doesn’t normally do journaling
• So no need to process a log on reboot

• Instead, it periodically does write-back of transactions
• Mostly they succeed, but we still need a mechanism for if they fail

ZFS Journaling

• ZFS journals in two cases

• If an app wants to synch right now, its update transaction is written
to a log on stable storage

• But its transaction is also maintained in the write-back cache
• Usually the transaction goes to disk when periodic update occurs and then

the log entry is unlinked
• (So, mostly the log is written by never read)

• A “Delete queue”
• Written at the ZPL level
• Records the intention to delete file/directories

ZFS Crash Resilience

• If ZFS isn’t doing logging, how does it get transactional updates?

• What it does feels similar to the RCU (read-copy-update) lock we saw
earlier

• Copy-on-write updates of logical blocks
• A single (hopefully) atomic operation installs a new version of the file system

• The old version can be garbage collected, if you want
• The old version can be maintained, as a “snapshot”

ZFS Crash Resilience

ZFS Snapshots

The snapshot is basically a diff, so its size is related to the number of bytes changed,
not the size of the entire file system.

vdev Label and Uber-blocks

• Label updates first write L0 and L2 and then write L1 and L3
• Uber-block updates are written round-robin across disks
• On (re)boot, the most recently written Uber-block is made current

Layout of entire vdev

Pool attributes
128 1KB Uber-blocks

ZFS: File System Imposed Size Limitations

File System Max File Size Max Volume Size Max # Files

FAT32 4GB 16TB -

NTFS 16EB 16EB 232

ext4 16TB 1EB 232

ZFS 16EB 278B 2128

1EB = 1,000,000 TB

ZFS implementors wanted to accommodate exponential
growth in storage capacity...

ZFS Summary

More Information

• The paper linked from the course calendar
• The slide deck linked from the course calendar
• The Internet

