
CSE 451: Operating Systems

Spring 2022

Module 9.5

Synchronization Review

John Zahorjan

Topics

• High level review of synchronization mechanisms

• RCU (read-copy-update) locks

• Non-blocking synchronization

Spinlocks struct lock {

int held = 0;

}

void acquire(lock) {

while(test_and_set(&lock->held));

}

void release(lock) {

lock->held = 0;

}

1. Why is hardware support required just to implement simple spin locks?

2. Is it required if there is only a single core?

3. What’s wrong with this implementation?

4. What is the policy that this mechanism implements (for who to hand the
lock to next)?

Blocking Lock (Mutex)

Mutex::acquire() {

disableInterrupts();

spinLock.acquire();
if (value == BUSY) {

waiting.add(myTCB);

suspend(&spinlock);
} else {

value = BUSY;

}
spinLock.release();

enableInterrupts();

}

Mutex::release() {

disableInterrupts();

spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();

scheduler->makeReady(next);
} else {

value = FREE;

}

spinLock.release();
enableInterrupts();

}

Blocking Lock (Mutex)
Mutex::acquire() {

disableInterrupts();

spinLock.acquire();

if (value == BUSY) {

waiting.add(myTCB);

suspend(&spinlock);

} else {

value = BUSY;

}

spinLock.release();

enableInterrupts();

}

Mutex::release() {

disableInterrupts();

spinLock.acquire();

if (!waiting.Empty()) {

next = waiting.remove();

scheduler->makeReady(next);

} else {
value = FREE;

}

spinLock.release();

enableInterrupts();

}

1. Why do we need a spinlock?
2. Why does the code disable interrupts?
3. Where is the implementation of the policy for who to give the lock

to next?
1. Where should it be?

More Robust Spinlock Performance

MCS Lock Implementation
MCSLock::acquire() {

Queue oldTail = tail;

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;

while (!compareAndSwap(&tail,

oldTail, &myTCB)) {
oldTail = tail;

}

if (oldTail != NULL) {
oldTail−>next = myTCB;

memory_barrier();

while (myTCB−>needToWait) ;
}

}

MCSLock::release() {

if (!compareAndSwap(&tail,

myTCB, NULL)) {
while (myTCB−>next == NULL) ;

myTCB−>next−>needToWait=FALSE;

}
}

race
Why is this fast?
• Under low lock contention
• At high lock contention

Spin on thread-specific location

What is the Lesson of MCS Locks?

• ?

R/W Locks Possible Implementation

void startRead() {
lock.lock();
while (numWriters > 0)

wait(readWaitCV, lock);
numReaders++;
lock.unlock();

}
void endRead() {

lock.lock();
if (--numReaders == 0)

signal(writeWaitCV);
lock.unlock();

}

void startWrite() {

lock.lock();

while (numWriters > 0 || numReaders > 0)
wait(writeWaitCV, lock);

numWriters = 1;

lock.unlock();
}

void endWrite() {

lock.lock();
numWriters = 0;

broadcast(readWaitCV);

signal(writeWaitCV);
lock.unlock();

}

R/W Locks

1. What is their purpose?

2. What is the policy issue?

3. What is/are the technical term(s) associated with the policy
issue?

Something New:
Read-Copy-Update Locks

Read-Copy-Update
• Goal: low latency reads to shared data

• Reads proceed without first acquiring a lock
• It’s OK if we get this by making writes (very) slow

• Best use scenario: writes are infrequent

• Writers: Restricted update
• Writer creates a new version (copy) of data structure
• Publishes new version with a single atomic instruction

• Readers: Unimpeded by writes because writers never write a data structure that
is being read

• This results in multiple concurrent versions
• Which means that readers may see an “old version” for a limited time

• When is it safe to clean up old version?
• Relies on integration with thread scheduler
• Guarantee all readers complete within grace period, and then garbage collect old

version

Read-Copy-Update

RCU Lock Basic Idea

• Use an atomic update to install next version of data structure
• Reader sees either the last version or the new version, but never a mixture of the

two

• Don’t know if any readers are still using an old version
• Problem: can’t “clean up” old versions as part of publishing new versions

• Solution: version generation numbers
• Increment a generation number (counter) associated with data structure each

time a new version is published
• Each thread advertises the highest version number it has seen
• So... just wait until all threads are saying they’ve seen at least version N to clean

up versions before N

• RCU Locks: do that, but on a processor basis rather than a thread basis
• Why not on a per-thread basis?

Read-Copy-Update Implementation

• Readers disable interrupts on entry
• Guarantees they complete critical section in a timely fashion
• Prevents scheduler from running on that core
• No need for a read or write lock

• Writers
• Acquire write lock

• One writer at a time
• Copy-Update

• Create new data structure
• Publish new version with atomic instruction
• Release write lock

• Wait for scheduler time slice on each CPU
• Only then, garbage collect old version of data structure

Writer Operation

WriteLock(); // only one writer at a time

<prepare updated data structure>

publish(updated data structure); // make new version visible by CAS
// pointer

WriteUnlock(); // allow another writer to start

synchronize(); // wait until all readers are at at least the version
// you published

<free anything that needs freeing from the version you replaced>

RCU Lock Implementation

void ReadLock() { disableInterrupts(); }
void ReadUnlock() { enableInterrupts(); }

void WriteLock() { writerSpin.lock(); }
void WriteUnlock() { writerSpin.unlock(); }

void publish(void **ppHead, void *pNew) {
memory_barrier();
*ppHead = pNew; // atomic assignment needed...
memory_barrier();

}

RCU Lock Implementation
// called after each modification (after releasing write lock)
void synchronize() {

c = atomicIncrement(globalCounter);
for (p=0; p<NUM_CORES; p++)

while (PER_PROC_VAR(quiescentCount,p) < c)
sleep(10); // about a scheduling quantum

}
// called by scheduler (if scheduler is running, there is no reader running or

// suspended on that processor)
void QuiescentState() {

memory_barrier();
PER_PROC_VAR(quiescentCount) = globalCounter;
memory_barrier();

}

RCU Lock Question

• We require that the new version of the update be published with a
single, atomic instruction, so…

• Why do we need a write lock?
• Why not just produce the updated data structure without a lock and then

install it using the atomic instruction?

Deadlock

Traditional Dining Lawyers Solution

• Static rules are:
• All lawyers but one pick up right fork and then left fork
• One lawyer picks up left fork then right fork

• This is an example of resource ordering

0

7

6

54

3

2

1

[Bonus Slide] Acquire All Locks At Once – C++

std::lock
template <class Mutex1, class Mutex2, class... Mutexes> void lock (Mutex1& a, Mutex2& b, Mutexes&... cde);
Lock multiple mutexes

Locks all the objects passed as arguments, blocking the calling thread if necessary.

The function locks the objects using an unspecified sequence of calls to their members lock, try_lock and unlock that
ensures that all arguments are locked on return (without producing any deadlocks).

If the function cannot lock all objects (such as because one of its internal calls threw an exception), the function
first unlocks all objects it successfully locked (if any) before failing.

From http://www.cplusplus.com/reference/mutex/lock/
See code sample there for clearer connection to deadlock issues.

New: Non-Blocking Data Structures

Yet Another Approach: Non-Blocking
Algorithms

• An algorithm is non-blocking if a slow thread cannot prevent another
faster thread from making progress

• Using locks is not non-blocking because a thread may acquire the lock and
then run really really slowly

• (Why?)

• Non-blocking algorithms are often built on an atomic hardware
instruction, Compare And Swap (CAS), whose semantics are:

bool CAS(ptr, old, new) {
if (*ptr == old) { *ptr = new; return true; }
return false;

}

Example: Non-blocking atomic integer

int atomic_int_add(atomic_int *p, int val) {
int oldval;
do {

oldval = *p;
} while (!CAS(p, oldval, oldval+val);

);

• What happens if multiple threads execute this concurrently?
• Does every thread make progress?
• Does at least one thread make progress in bounded number of steps?

• Suppose a thread currently executing this routine is pre-empted?

Why Non-blocking?
Two words: No locks!

• With locks, what happens if a thread is pre-empted while holding a lock?

• With locks, deadlock might be possible.
• Is it possible when there are no locks?

• Priority inversion and locks
• Assume threads have been assigned priorities, and we’d like to preferentially

allocate cores to the highest priority runnable threads
• Now suppose a low priority thread holds a lock needed by a high priority thread
• Medium priority threads might steal the core from the low priority thread,

indefinitely delaying the high priority thread!

• Alternative solution (to non-blocking): priority inheritance
• Raise the priority of a thread holding a lock to the maximum priority of any

thread waiting for the lock

Why Not Non-Blocking?

• 1 word: complicated! [fragile, error prone, special cases…]
• Let’s build a non-blocking FIFO queue
• What problems do we anticipate with these?

null
FIFO object

empty FIFO

FIFO objectNon- empty
FIFO value value

null
value

head
FIFO objectNon- empty

FIFO (V2) value value
null

value
tail

How would you build enqueue using CAS?
How would you build dequeue using CAS?

1st

try

2nd

try

Why not non-blocking?
(Non-blocking FIFO implementation)

Pointers are stored with a generation number in one 8-byte quantity
(32-bit pointer + 32-bit generation number)

From Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
by Michael & Scott.

Non-blocking FIFO

pointer gen #pointer_t

head

tail
empty FIFO

null

xxx

dummy nodeFIFO object

non-empty
FIFO

(Version 1)

head

tail xxx 10

null

222

dummy nodeFIFO object

Non-blocking FIFO: enqueue value 17

head

tail xxx 10

null

222

dummy nodeFIFO object

null

17

1. Update tail->next to point to new node
2. Update tail to point to new node

But other inserts might be going on at same time…

In general, the tail pointer might “fall behind” the actual tail of the FIFO.
Think of the tail pointer as a performance hint

• it’s better to start looking for the tail from where it points than from where
the head pointer points

null

-10

Non-blocking FIFO: dequeue

head

tail xxx 10

null

222

dummy nodeFIFO object

1. Return failure if head pointer is null
2. Update tail->head to point to next node
3. Free previous dummy node
4. Return 10

But other dequeues might be going on at same time…
The first of them might free the node that contains the value I need (10)!

1.5 So, grab the value optimistically, then return it only if you manage to move the
head pointer to that node (making it the new dummy node).

dummy node

Non-blocking FIFO: enqueue()

Non-blocking FIFO: dequeue

Performance Results

12 processor Silicon Graphics Challenge

Looking Forward: Storage

• The OS wants to do for storage what it did for CPU and memory.
What is that (at this very general level of description)?

• Outline:
• What is the file system abstraction?
• What are the basic mechanisms for implementation?
• What are the performance characteristics of the physical storage devices?
• What is fast on them, what is slow?
• Maintaining file system integrity in the face of fail-stop errors

